Higher Order Fractional Stable Motion: Hyperdiffusion with Heavy Tails

We introduce the class of higher order fractional stable motions that can exhibit hyperdiffusive spreading with heavy tails. We define the class as a generalization of higher order fractional Brownian motion as well as a generalization of linear fractional stable motions. Higher order fractional sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2016-10, Vol.165 (1), p.126-152
1. Verfasser: Kawai, Reiichiro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We introduce the class of higher order fractional stable motions that can exhibit hyperdiffusive spreading with heavy tails. We define the class as a generalization of higher order fractional Brownian motion as well as a generalization of linear fractional stable motions. Higher order fractional stable motions are self-similar with Hurst index larger than one and non-Gaussian stable marginals with infinite variance and have stationary higher order increments. We investigate their sample path properties and asymptotic dependence structure on the basis of codifference. In particular, by incrementing or decrementing sample paths once under suitable conditions, the diffusion rate can be accelerated or decelerated by one order. With a view towards simulation study, we provide a ready-for-use sample path simulation recipe at discrete times along with error analysis. The proposed simulation scheme requires only elementary numerical operations and is robust to high frequency sampling, irregular spacing and super-sampling.
ISSN:0022-4715
1572-9613
DOI:10.1007/s10955-016-1602-0