Zigzag-Shaped Superlattices on the Basis of Graphene Nanoribbons: Structure and Electronic Properties

The paper focuses on superlattices consisting of two coplanar fragments of one-layer graphene nanoribbons that have different width and are connected at an angle. Classification of such superlattices was carried out; their electronic properties were studied using the tight-binding method. It was dem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian Physics Journal 2016-09, Vol.59 (5), p.633-639
Hauptverfasser: Saroka, V. A., Batrakov, K. G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 639
container_issue 5
container_start_page 633
container_title Russian Physics Journal
container_volume 59
creator Saroka, V. A.
Batrakov, K. G.
description The paper focuses on superlattices consisting of two coplanar fragments of one-layer graphene nanoribbons that have different width and are connected at an angle. Classification of such superlattices was carried out; their electronic properties were studied using the tight-binding method. It was demonstrated that in superlattices consisting of two fragments of graphene nanoribbons with armchair edges connected at an angle of 60°, the band gap can be regulated by the number of dimeric carbon atom chains of one of the fragments. In that case one can observe a periodic dependence of the band gap on the number of chains with a characteristic period equal to three dimeric chains. The number of dimeric chains of the second superlattice fragment regulates the average band gap value near which the periodic oscillations occur, as well as the amplitude of those oscillations. Therefore, one can accomplish a sufficiently precise band gap tuning for such structures. Such tuning can find its wide application in the booming carbon nanoelectronics industry when creating generators, amplifiers and sensors in the nanochains.
doi_str_mv 10.1007/s11182-016-0816-6
format Article
fullrecord <record><control><sourceid>gale_hal_p</sourceid><recordid>TN_cdi_proquest_journals_1880867613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A495578087</galeid><sourcerecordid>A495578087</sourcerecordid><originalsourceid>FETCH-LOGICAL-c642t-8431e35d26c9269f48db3d5a0c441a7d0d014358b494204a3c5a2e34da722ea23</originalsourceid><addsrcrecordid>eNp1kU-LFDEQxRtRcF39AN4Cnjz0mn-dpL2Ny7orDCrM7sVLqElXz2TpTdokLbiffjO0iBcJVKqK9ysevKZ5y-gFo1R_yIwxw1vKVEtNLepZc8Y6Ldqec_O89lTJ1hijXzavcr6ntFJKnzX4wx8e4dDujjDjQHbLjGmCUrzDTGIg5YjkE2Rfh5FcJ5iPGJB8hRCT3-9jyB_JrqTFlSUhgTCQqwldSTF4R76nWK8Vj_l182KEKeObP_95c_f56vbypt1-u_5yudm2TkleWiMFQ9ENXLmeq36UZtiLoQPqpGSgBzpQJkVn9rKXnEoQrgOOQg6gOUfg4rx5v949wmTn5B8g_bYRvL3ZbO1pR1lnei3ZL1a171btnOLPBXOx93FJodqzzBhqlFZMVNXFqjrAhNaHMZYErr4BH7yLAUdf9xvZd52ukK4AWwGXYs4Jx78-GLWnqOwaVbWi7CkqqyrDVyZXbThg-sfKf6EnWO6U-Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880867613</pqid></control><display><type>article</type><title>Zigzag-Shaped Superlattices on the Basis of Graphene Nanoribbons: Structure and Electronic Properties</title><source>SpringerLink Journals</source><creator>Saroka, V. A. ; Batrakov, K. G.</creator><creatorcontrib>Saroka, V. A. ; Batrakov, K. G.</creatorcontrib><description>The paper focuses on superlattices consisting of two coplanar fragments of one-layer graphene nanoribbons that have different width and are connected at an angle. Classification of such superlattices was carried out; their electronic properties were studied using the tight-binding method. It was demonstrated that in superlattices consisting of two fragments of graphene nanoribbons with armchair edges connected at an angle of 60°, the band gap can be regulated by the number of dimeric carbon atom chains of one of the fragments. In that case one can observe a periodic dependence of the band gap on the number of chains with a characteristic period equal to three dimeric chains. The number of dimeric chains of the second superlattice fragment regulates the average band gap value near which the periodic oscillations occur, as well as the amplitude of those oscillations. Therefore, one can accomplish a sufficiently precise band gap tuning for such structures. Such tuning can find its wide application in the booming carbon nanoelectronics industry when creating generators, amplifiers and sensors in the nanochains.</description><identifier>ISSN: 1064-8887</identifier><identifier>EISSN: 1573-9228</identifier><identifier>DOI: 10.1007/s11182-016-0816-6</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon ; Chains ; Condensed Matter Physics ; Dimers ; Energy gap ; Fragments ; Graphene ; Graphite ; Hadrons ; Heavy Ions ; Lasers ; Mathematical and Computational Physics ; Nanoelectronics ; Nanoribbons ; Nuclear Physics ; Optical Devices ; Optics ; Oscillations ; Photonics ; Physics ; Physics and Astronomy ; Superlattices ; Theoretical ; Tuning</subject><ispartof>Russian Physics Journal, 2016-09, Vol.59 (5), p.633-639</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c642t-8431e35d26c9269f48db3d5a0c441a7d0d014358b494204a3c5a2e34da722ea23</citedby><cites>FETCH-LOGICAL-c642t-8431e35d26c9269f48db3d5a0c441a7d0d014358b494204a3c5a2e34da722ea23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11182-016-0816-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11182-016-0816-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://hal.science/hal-01589741$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Saroka, V. A.</creatorcontrib><creatorcontrib>Batrakov, K. G.</creatorcontrib><title>Zigzag-Shaped Superlattices on the Basis of Graphene Nanoribbons: Structure and Electronic Properties</title><title>Russian Physics Journal</title><addtitle>Russ Phys J</addtitle><description>The paper focuses on superlattices consisting of two coplanar fragments of one-layer graphene nanoribbons that have different width and are connected at an angle. Classification of such superlattices was carried out; their electronic properties were studied using the tight-binding method. It was demonstrated that in superlattices consisting of two fragments of graphene nanoribbons with armchair edges connected at an angle of 60°, the band gap can be regulated by the number of dimeric carbon atom chains of one of the fragments. In that case one can observe a periodic dependence of the band gap on the number of chains with a characteristic period equal to three dimeric chains. The number of dimeric chains of the second superlattice fragment regulates the average band gap value near which the periodic oscillations occur, as well as the amplitude of those oscillations. Therefore, one can accomplish a sufficiently precise band gap tuning for such structures. Such tuning can find its wide application in the booming carbon nanoelectronics industry when creating generators, amplifiers and sensors in the nanochains.</description><subject>Carbon</subject><subject>Chains</subject><subject>Condensed Matter Physics</subject><subject>Dimers</subject><subject>Energy gap</subject><subject>Fragments</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Lasers</subject><subject>Mathematical and Computational Physics</subject><subject>Nanoelectronics</subject><subject>Nanoribbons</subject><subject>Nuclear Physics</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Oscillations</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Superlattices</subject><subject>Theoretical</subject><subject>Tuning</subject><issn>1064-8887</issn><issn>1573-9228</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kU-LFDEQxRtRcF39AN4Cnjz0mn-dpL2Ny7orDCrM7sVLqElXz2TpTdokLbiffjO0iBcJVKqK9ysevKZ5y-gFo1R_yIwxw1vKVEtNLepZc8Y6Ldqec_O89lTJ1hijXzavcr6ntFJKnzX4wx8e4dDujjDjQHbLjGmCUrzDTGIg5YjkE2Rfh5FcJ5iPGJB8hRCT3-9jyB_JrqTFlSUhgTCQqwldSTF4R76nWK8Vj_l182KEKeObP_95c_f56vbypt1-u_5yudm2TkleWiMFQ9ENXLmeq36UZtiLoQPqpGSgBzpQJkVn9rKXnEoQrgOOQg6gOUfg4rx5v949wmTn5B8g_bYRvL3ZbO1pR1lnei3ZL1a171btnOLPBXOx93FJodqzzBhqlFZMVNXFqjrAhNaHMZYErr4BH7yLAUdf9xvZd52ukK4AWwGXYs4Jx78-GLWnqOwaVbWi7CkqqyrDVyZXbThg-sfKf6EnWO6U-Q</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Saroka, V. A.</creator><creator>Batrakov, K. G.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>1XC</scope><scope>VOOES</scope></search><sort><creationdate>20160901</creationdate><title>Zigzag-Shaped Superlattices on the Basis of Graphene Nanoribbons: Structure and Electronic Properties</title><author>Saroka, V. A. ; Batrakov, K. G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c642t-8431e35d26c9269f48db3d5a0c441a7d0d014358b494204a3c5a2e34da722ea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Carbon</topic><topic>Chains</topic><topic>Condensed Matter Physics</topic><topic>Dimers</topic><topic>Energy gap</topic><topic>Fragments</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Lasers</topic><topic>Mathematical and Computational Physics</topic><topic>Nanoelectronics</topic><topic>Nanoribbons</topic><topic>Nuclear Physics</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Oscillations</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Superlattices</topic><topic>Theoretical</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saroka, V. A.</creatorcontrib><creatorcontrib>Batrakov, K. G.</creatorcontrib><collection>CrossRef</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><jtitle>Russian Physics Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saroka, V. A.</au><au>Batrakov, K. G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zigzag-Shaped Superlattices on the Basis of Graphene Nanoribbons: Structure and Electronic Properties</atitle><jtitle>Russian Physics Journal</jtitle><stitle>Russ Phys J</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>59</volume><issue>5</issue><spage>633</spage><epage>639</epage><pages>633-639</pages><issn>1064-8887</issn><eissn>1573-9228</eissn><abstract>The paper focuses on superlattices consisting of two coplanar fragments of one-layer graphene nanoribbons that have different width and are connected at an angle. Classification of such superlattices was carried out; their electronic properties were studied using the tight-binding method. It was demonstrated that in superlattices consisting of two fragments of graphene nanoribbons with armchair edges connected at an angle of 60°, the band gap can be regulated by the number of dimeric carbon atom chains of one of the fragments. In that case one can observe a periodic dependence of the band gap on the number of chains with a characteristic period equal to three dimeric chains. The number of dimeric chains of the second superlattice fragment regulates the average band gap value near which the periodic oscillations occur, as well as the amplitude of those oscillations. Therefore, one can accomplish a sufficiently precise band gap tuning for such structures. Such tuning can find its wide application in the booming carbon nanoelectronics industry when creating generators, amplifiers and sensors in the nanochains.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11182-016-0816-6</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1064-8887
ispartof Russian Physics Journal, 2016-09, Vol.59 (5), p.633-639
issn 1064-8887
1573-9228
language eng
recordid cdi_proquest_journals_1880867613
source SpringerLink Journals
subjects Carbon
Chains
Condensed Matter Physics
Dimers
Energy gap
Fragments
Graphene
Graphite
Hadrons
Heavy Ions
Lasers
Mathematical and Computational Physics
Nanoelectronics
Nanoribbons
Nuclear Physics
Optical Devices
Optics
Oscillations
Photonics
Physics
Physics and Astronomy
Superlattices
Theoretical
Tuning
title Zigzag-Shaped Superlattices on the Basis of Graphene Nanoribbons: Structure and Electronic Properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T06%3A56%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_hal_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zigzag-Shaped%20Superlattices%20on%20the%20Basis%20of%20Graphene%20Nanoribbons:%20Structure%20and%20Electronic%20Properties&rft.jtitle=Russian%20Physics%20Journal&rft.au=Saroka,%20V.%20A.&rft.date=2016-09-01&rft.volume=59&rft.issue=5&rft.spage=633&rft.epage=639&rft.pages=633-639&rft.issn=1064-8887&rft.eissn=1573-9228&rft_id=info:doi/10.1007/s11182-016-0816-6&rft_dat=%3Cgale_hal_p%3EA495578087%3C/gale_hal_p%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880867613&rft_id=info:pmid/&rft_galeid=A495578087&rfr_iscdi=true