A sufficient condition for the realizability of the least number of periodic points of a smooth map
There are two algebraic lower bounds of the number of n -periodic points of a self-map f : M → M of a compact smooth manifold of dimension at least 3: N F n ( f ) = min { # Fix ( g n ) ; g ~ f ; g continuous } and N J D n ( f ) = min { # Fix ( g n ) ; g ~ f ; g smooth } . In general NJD n ( f ) may...
Gespeichert in:
Veröffentlicht in: | Journal of fixed point theory and applications 2016-09, Vol.18 (3), p.609-626 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | There are two algebraic lower bounds of the number of
n
-periodic points of a self-map
f
:
M
→
M
of a compact smooth manifold of dimension at least 3:
N
F
n
(
f
)
=
min
{
#
Fix
(
g
n
)
;
g
~
f
;
g
continuous
}
and
N
J
D
n
(
f
)
=
min
{
#
Fix
(
g
n
)
;
g
~
f
;
g
smooth
}
.
In general
NJD
n
(
f
) may be much greater than
NF
n
(
f
). In the simply connected case, the equality of the two numbers is equivalent to the sequence of Lefschetz numbers satisfying restrictions introduced by Chow, Mallet-Parret and Yorke (
1983
). The last condition is not sufficient in the non-simply connected case. Here we give some conditions which guarantee the equality when
π
1
M
=
Z
2
. |
---|---|
ISSN: | 1661-7738 1661-7746 |
DOI: | 10.1007/s11784-016-0311-2 |