The Corolla Polynomial for Spontaneously Broken Gauge Theories
In Kreimer and Yeats (Electr. J. Comb. 41–41, 2013 ), Kreimer et al. (Annals Phys. 336, 180–222, 2013 ) and Sars ( 2015 ) the Corolla Polynomial C ( Γ ) ∈ ℂ [ a h 1 , … , a h Γ [ 1 / 2 ] ] was introduced as a graph polynomial in half-edge variables { a h } h ∈ Γ [ 1 / 2 ] over a 3-regular scalar qua...
Gespeichert in:
Veröffentlicht in: | Mathematical physics, analysis, and geometry analysis, and geometry, 2016-01, Vol.19 (3), p.1-35, Article 18 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | Mathematical physics, analysis, and geometry |
container_volume | 19 |
creator | Prinz, David |
description | In Kreimer and Yeats (Electr. J. Comb. 41–41,
2013
), Kreimer et al. (Annals Phys. 336, 180–222,
2013
) and Sars (
2015
) the Corolla Polynomial
C
(
Γ
)
∈
ℂ
[
a
h
1
,
…
,
a
h
Γ
[
1
/
2
]
]
was introduced as a graph polynomial in half-edge variables
{
a
h
}
h
∈
Γ
[
1
/
2
]
over a 3-regular scalar quantum field theory (QFT) Feynman graph Γ. It allows for a covariant quantization of pure Yang-Mills theory without the need for introducing ghost fields, clarifies the relation between quantum gauge theory and scalar QFT with cubic interaction and translates back the problem of renormalizing quantum gauge theory to the problem of renormalizing scalar QFT with cubic interaction (which is super renormalizable in 4 dimensions of spacetime). Furthermore, it is, as we believe, useful for computer calculations. In Prinz (
2015
) on which this paper is based the formulation of Kreimer and Yeats (Electr. J. Comb. 41–41,
2013
), Kreimer et al. (Annals Phys. 336, 180–222,
2013
) and Sars (
2015
) gets slightly altered in a fashion specialized in the case of the Feynman gauge. It is then formulated as a graph polynomial
C
(
Γ
)
∈
ℂ
[
a
h
1
±
,
…
,
a
h
Γ
[
1
/
2
]
±
,
b
h
1
,
…
,
b
h
Γ
[
1
/
2
]
]
in three different types of half-edge variables
{
a
h
+
,
a
h
−
,
b
h
}
h
∈
Γ
[
1
/
2
]
. This formulation is also suitable for the generalization to the case of spontaneously broken gauge theories (in particular all bosons from the Standard Model), as was first worked out in Prinz (
2015
) and gets reviewed here. |
doi_str_mv | 10.1007/s11040-016-9222-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880866818</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880866818</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-802e562d0fd9f5562564d565eb0efe00bf935672f4a9edb04069e39c445e33af3</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWP98AG8Bz9FJsskmF0GLVqGgYD2HtDuprdtNTbqHfntT1oMXT_Ng3u8N8wi54nDDAerbzDlUwIBrZoUQDI7IiKtaMKuVPi5aGlW2tTglZzmvoTBGwIjczT6RjmOKbevpW2z3XdysfEtDTPR9G7ud7zD2ud3ThxS_sKMT3y-RFiqmFeYLchJ8m_Hyd56Tj6fH2fiZTV8nL-P7KVtIrnfMgEClRQOhsUEVpXTVKK1wDhgQYB6sVLoWofIWm3n5RFuUdlFVCqX0QZ6T6yF3m-J3j3nn1rFPXTnpuDFgtDbcFBcfXIsUc04Y3DatNj7tHQd3qMkNNblSkzvU5KAwYmBy8XZLTH-S_4V-AGfAaUk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880866818</pqid></control><display><type>article</type><title>The Corolla Polynomial for Spontaneously Broken Gauge Theories</title><source>SpringerLink Journals</source><creator>Prinz, David</creator><creatorcontrib>Prinz, David</creatorcontrib><description>In Kreimer and Yeats (Electr. J. Comb. 41–41,
2013
), Kreimer et al. (Annals Phys. 336, 180–222,
2013
) and Sars (
2015
) the Corolla Polynomial
C
(
Γ
)
∈
ℂ
[
a
h
1
,
…
,
a
h
Γ
[
1
/
2
]
]
was introduced as a graph polynomial in half-edge variables
{
a
h
}
h
∈
Γ
[
1
/
2
]
over a 3-regular scalar quantum field theory (QFT) Feynman graph Γ. It allows for a covariant quantization of pure Yang-Mills theory without the need for introducing ghost fields, clarifies the relation between quantum gauge theory and scalar QFT with cubic interaction and translates back the problem of renormalizing quantum gauge theory to the problem of renormalizing scalar QFT with cubic interaction (which is super renormalizable in 4 dimensions of spacetime). Furthermore, it is, as we believe, useful for computer calculations. In Prinz (
2015
) on which this paper is based the formulation of Kreimer and Yeats (Electr. J. Comb. 41–41,
2013
), Kreimer et al. (Annals Phys. 336, 180–222,
2013
) and Sars (
2015
) gets slightly altered in a fashion specialized in the case of the Feynman gauge. It is then formulated as a graph polynomial
C
(
Γ
)
∈
ℂ
[
a
h
1
±
,
…
,
a
h
Γ
[
1
/
2
]
±
,
b
h
1
,
…
,
b
h
Γ
[
1
/
2
]
]
in three different types of half-edge variables
{
a
h
+
,
a
h
−
,
b
h
}
h
∈
Γ
[
1
/
2
]
. This formulation is also suitable for the generalization to the case of spontaneously broken gauge theories (in particular all bosons from the Standard Model), as was first worked out in Prinz (
2015
) and gets reviewed here.</description><identifier>ISSN: 1385-0172</identifier><identifier>EISSN: 1572-9656</identifier><identifier>DOI: 10.1007/s11040-016-9222-0</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Analysis ; Applications of Mathematics ; Bosons ; Field theory ; Gauge theory ; Geometry ; Group Theory and Generalizations ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Polynomials ; Quantum field theory ; Quantum theory ; Theoretical ; Yang-Mills theory</subject><ispartof>Mathematical physics, analysis, and geometry, 2016-01, Vol.19 (3), p.1-35, Article 18</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-802e562d0fd9f5562564d565eb0efe00bf935672f4a9edb04069e39c445e33af3</citedby><cites>FETCH-LOGICAL-c316t-802e562d0fd9f5562564d565eb0efe00bf935672f4a9edb04069e39c445e33af3</cites><orcidid>0000-0001-7089-8870</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11040-016-9222-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11040-016-9222-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Prinz, David</creatorcontrib><title>The Corolla Polynomial for Spontaneously Broken Gauge Theories</title><title>Mathematical physics, analysis, and geometry</title><addtitle>Math Phys Anal Geom</addtitle><description>In Kreimer and Yeats (Electr. J. Comb. 41–41,
2013
), Kreimer et al. (Annals Phys. 336, 180–222,
2013
) and Sars (
2015
) the Corolla Polynomial
C
(
Γ
)
∈
ℂ
[
a
h
1
,
…
,
a
h
Γ
[
1
/
2
]
]
was introduced as a graph polynomial in half-edge variables
{
a
h
}
h
∈
Γ
[
1
/
2
]
over a 3-regular scalar quantum field theory (QFT) Feynman graph Γ. It allows for a covariant quantization of pure Yang-Mills theory without the need for introducing ghost fields, clarifies the relation between quantum gauge theory and scalar QFT with cubic interaction and translates back the problem of renormalizing quantum gauge theory to the problem of renormalizing scalar QFT with cubic interaction (which is super renormalizable in 4 dimensions of spacetime). Furthermore, it is, as we believe, useful for computer calculations. In Prinz (
2015
) on which this paper is based the formulation of Kreimer and Yeats (Electr. J. Comb. 41–41,
2013
), Kreimer et al. (Annals Phys. 336, 180–222,
2013
) and Sars (
2015
) gets slightly altered in a fashion specialized in the case of the Feynman gauge. It is then formulated as a graph polynomial
C
(
Γ
)
∈
ℂ
[
a
h
1
±
,
…
,
a
h
Γ
[
1
/
2
]
±
,
b
h
1
,
…
,
b
h
Γ
[
1
/
2
]
]
in three different types of half-edge variables
{
a
h
+
,
a
h
−
,
b
h
}
h
∈
Γ
[
1
/
2
]
. This formulation is also suitable for the generalization to the case of spontaneously broken gauge theories (in particular all bosons from the Standard Model), as was first worked out in Prinz (
2015
) and gets reviewed here.</description><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Bosons</subject><subject>Field theory</subject><subject>Gauge theory</subject><subject>Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Polynomials</subject><subject>Quantum field theory</subject><subject>Quantum theory</subject><subject>Theoretical</subject><subject>Yang-Mills theory</subject><issn>1385-0172</issn><issn>1572-9656</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWP98AG8Bz9FJsskmF0GLVqGgYD2HtDuprdtNTbqHfntT1oMXT_Ng3u8N8wi54nDDAerbzDlUwIBrZoUQDI7IiKtaMKuVPi5aGlW2tTglZzmvoTBGwIjczT6RjmOKbevpW2z3XdysfEtDTPR9G7ud7zD2ud3ThxS_sKMT3y-RFiqmFeYLchJ8m_Hyd56Tj6fH2fiZTV8nL-P7KVtIrnfMgEClRQOhsUEVpXTVKK1wDhgQYB6sVLoWofIWm3n5RFuUdlFVCqX0QZ6T6yF3m-J3j3nn1rFPXTnpuDFgtDbcFBcfXIsUc04Y3DatNj7tHQd3qMkNNblSkzvU5KAwYmBy8XZLTH-S_4V-AGfAaUk</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Prinz, David</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-7089-8870</orcidid></search><sort><creationdate>20160101</creationdate><title>The Corolla Polynomial for Spontaneously Broken Gauge Theories</title><author>Prinz, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-802e562d0fd9f5562564d565eb0efe00bf935672f4a9edb04069e39c445e33af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Bosons</topic><topic>Field theory</topic><topic>Gauge theory</topic><topic>Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Polynomials</topic><topic>Quantum field theory</topic><topic>Quantum theory</topic><topic>Theoretical</topic><topic>Yang-Mills theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prinz, David</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematical physics, analysis, and geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prinz, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Corolla Polynomial for Spontaneously Broken Gauge Theories</atitle><jtitle>Mathematical physics, analysis, and geometry</jtitle><stitle>Math Phys Anal Geom</stitle><date>2016-01-01</date><risdate>2016</risdate><volume>19</volume><issue>3</issue><spage>1</spage><epage>35</epage><pages>1-35</pages><artnum>18</artnum><issn>1385-0172</issn><eissn>1572-9656</eissn><abstract>In Kreimer and Yeats (Electr. J. Comb. 41–41,
2013
), Kreimer et al. (Annals Phys. 336, 180–222,
2013
) and Sars (
2015
) the Corolla Polynomial
C
(
Γ
)
∈
ℂ
[
a
h
1
,
…
,
a
h
Γ
[
1
/
2
]
]
was introduced as a graph polynomial in half-edge variables
{
a
h
}
h
∈
Γ
[
1
/
2
]
over a 3-regular scalar quantum field theory (QFT) Feynman graph Γ. It allows for a covariant quantization of pure Yang-Mills theory without the need for introducing ghost fields, clarifies the relation between quantum gauge theory and scalar QFT with cubic interaction and translates back the problem of renormalizing quantum gauge theory to the problem of renormalizing scalar QFT with cubic interaction (which is super renormalizable in 4 dimensions of spacetime). Furthermore, it is, as we believe, useful for computer calculations. In Prinz (
2015
) on which this paper is based the formulation of Kreimer and Yeats (Electr. J. Comb. 41–41,
2013
), Kreimer et al. (Annals Phys. 336, 180–222,
2013
) and Sars (
2015
) gets slightly altered in a fashion specialized in the case of the Feynman gauge. It is then formulated as a graph polynomial
C
(
Γ
)
∈
ℂ
[
a
h
1
±
,
…
,
a
h
Γ
[
1
/
2
]
±
,
b
h
1
,
…
,
b
h
Γ
[
1
/
2
]
]
in three different types of half-edge variables
{
a
h
+
,
a
h
−
,
b
h
}
h
∈
Γ
[
1
/
2
]
. This formulation is also suitable for the generalization to the case of spontaneously broken gauge theories (in particular all bosons from the Standard Model), as was first worked out in Prinz (
2015
) and gets reviewed here.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11040-016-9222-0</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0001-7089-8870</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-0172 |
ispartof | Mathematical physics, analysis, and geometry, 2016-01, Vol.19 (3), p.1-35, Article 18 |
issn | 1385-0172 1572-9656 |
language | eng |
recordid | cdi_proquest_journals_1880866818 |
source | SpringerLink Journals |
subjects | Analysis Applications of Mathematics Bosons Field theory Gauge theory Geometry Group Theory and Generalizations Mathematical and Computational Physics Physics Physics and Astronomy Polynomials Quantum field theory Quantum theory Theoretical Yang-Mills theory |
title | The Corolla Polynomial for Spontaneously Broken Gauge Theories |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T03%3A08%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Corolla%20Polynomial%20for%20Spontaneously%20Broken%20Gauge%20Theories&rft.jtitle=Mathematical%20physics,%20analysis,%20and%20geometry&rft.au=Prinz,%20David&rft.date=2016-01-01&rft.volume=19&rft.issue=3&rft.spage=1&rft.epage=35&rft.pages=1-35&rft.artnum=18&rft.issn=1385-0172&rft.eissn=1572-9656&rft_id=info:doi/10.1007/s11040-016-9222-0&rft_dat=%3Cproquest_cross%3E1880866818%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880866818&rft_id=info:pmid/&rfr_iscdi=true |