Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties

A theorem of Ryan and Wolper states that a type A Schubert variety is smooth if and only if it is an iterated fibre bundle of Grassmannians. We extend this theorem to arbitrary finite type, showing that a Schubert variety in a generalized flag variety is rationally smooth if and only if it is an ite...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische annalen 2016-10, Vol.366 (1-2), p.31-55
Hauptverfasser: Richmond, Edward, Slofstra, William
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 55
container_issue 1-2
container_start_page 31
container_title Mathematische annalen
container_volume 366
creator Richmond, Edward
Slofstra, William
description A theorem of Ryan and Wolper states that a type A Schubert variety is smooth if and only if it is an iterated fibre bundle of Grassmannians. We extend this theorem to arbitrary finite type, showing that a Schubert variety in a generalized flag variety is rationally smooth if and only if it is an iterated fibre bundle of rationally smooth Grassmannian Schubert varieties. The proof depends on deep combinatorial results of Billey–Postnikov on Weyl groups. We determine all smooth and rationally smooth Grassmannian Schubert varieties, and give a new proof of Peterson’s theorem that all simply-laced rationally smooth Schubert varieties are smooth. Taken together, our results give a fairly complete geometric description of smooth and rationally smooth Schubert varieties using primarily combinatorial methods.
doi_str_mv 10.1007/s00208-015-1299-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880863847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880863847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2e7aee8ae16f4bc16b4b3cdd42fafe43c9602e3b872fd956841443dc8b9387843</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuA62pubdOlDt5gQMHLNjTpiZOx04xJOjA738E39EnsUBduXB045_v_Ax9Cp5ScU0LKi0gIIzIjNM8oq6pM7KEJFZxlVJJyH02Gc57lktNDdBTjkhDCCckn6PXKtS1svz-_Hn1MnXv3G9yA8au1jy4530Vcdw1OC8DW6QBY913TAo4p9Cb1w8Jb_GQWvYaQ8KYODpKDeIwObN1GOPmdU_Ryc_08u8vmD7f3s8t5ZjgtUsagrAFkDbSwQhtaaKG5aRrBbG1BcFMVhAHXsmS2qfJCCioEb4zUFZelFHyKzsbedfAfPcSklr4P3fBSUSmJLLgU5UDRkTLBxxjAqnVwqzpsFSVqp0-N-tSgT-30qV0zGzNxYLs3CH-a_w39AIXvdLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880863847</pqid></control><display><type>article</type><title>Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties</title><source>SpringerNature Journals</source><creator>Richmond, Edward ; Slofstra, William</creator><creatorcontrib>Richmond, Edward ; Slofstra, William</creatorcontrib><description>A theorem of Ryan and Wolper states that a type A Schubert variety is smooth if and only if it is an iterated fibre bundle of Grassmannians. We extend this theorem to arbitrary finite type, showing that a Schubert variety in a generalized flag variety is rationally smooth if and only if it is an iterated fibre bundle of rationally smooth Grassmannian Schubert varieties. The proof depends on deep combinatorial results of Billey–Postnikov on Weyl groups. We determine all smooth and rationally smooth Grassmannian Schubert varieties, and give a new proof of Peterson’s theorem that all simply-laced rationally smooth Schubert varieties are smooth. Taken together, our results give a fairly complete geometric description of smooth and rationally smooth Schubert varieties using primarily combinatorial methods.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-015-1299-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bundling ; Combinatorial analysis ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Mathematische annalen, 2016-10, Vol.366 (1-2), p.31-55</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2e7aee8ae16f4bc16b4b3cdd42fafe43c9602e3b872fd956841443dc8b9387843</citedby><cites>FETCH-LOGICAL-c316t-2e7aee8ae16f4bc16b4b3cdd42fafe43c9602e3b872fd956841443dc8b9387843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-015-1299-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-015-1299-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Richmond, Edward</creatorcontrib><creatorcontrib>Slofstra, William</creatorcontrib><title>Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>A theorem of Ryan and Wolper states that a type A Schubert variety is smooth if and only if it is an iterated fibre bundle of Grassmannians. We extend this theorem to arbitrary finite type, showing that a Schubert variety in a generalized flag variety is rationally smooth if and only if it is an iterated fibre bundle of rationally smooth Grassmannian Schubert varieties. The proof depends on deep combinatorial results of Billey–Postnikov on Weyl groups. We determine all smooth and rationally smooth Grassmannian Schubert varieties, and give a new proof of Peterson’s theorem that all simply-laced rationally smooth Schubert varieties are smooth. Taken together, our results give a fairly complete geometric description of smooth and rationally smooth Schubert varieties using primarily combinatorial methods.</description><subject>Bundling</subject><subject>Combinatorial analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOI4-gLuA62pubdOlDt5gQMHLNjTpiZOx04xJOjA738E39EnsUBduXB045_v_Ax9Cp5ScU0LKi0gIIzIjNM8oq6pM7KEJFZxlVJJyH02Gc57lktNDdBTjkhDCCckn6PXKtS1svz-_Hn1MnXv3G9yA8au1jy4530Vcdw1OC8DW6QBY913TAo4p9Cb1w8Jb_GQWvYaQ8KYODpKDeIwObN1GOPmdU_Ryc_08u8vmD7f3s8t5ZjgtUsagrAFkDbSwQhtaaKG5aRrBbG1BcFMVhAHXsmS2qfJCCioEb4zUFZelFHyKzsbedfAfPcSklr4P3fBSUSmJLLgU5UDRkTLBxxjAqnVwqzpsFSVqp0-N-tSgT-30qV0zGzNxYLs3CH-a_w39AIXvdLI</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Richmond, Edward</creator><creator>Slofstra, William</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties</title><author>Richmond, Edward ; Slofstra, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2e7aee8ae16f4bc16b4b3cdd42fafe43c9602e3b872fd956841443dc8b9387843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bundling</topic><topic>Combinatorial analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richmond, Edward</creatorcontrib><creatorcontrib>Slofstra, William</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richmond, Edward</au><au>Slofstra, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>366</volume><issue>1-2</issue><spage>31</spage><epage>55</epage><pages>31-55</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>A theorem of Ryan and Wolper states that a type A Schubert variety is smooth if and only if it is an iterated fibre bundle of Grassmannians. We extend this theorem to arbitrary finite type, showing that a Schubert variety in a generalized flag variety is rationally smooth if and only if it is an iterated fibre bundle of rationally smooth Grassmannian Schubert varieties. The proof depends on deep combinatorial results of Billey–Postnikov on Weyl groups. We determine all smooth and rationally smooth Grassmannian Schubert varieties, and give a new proof of Peterson’s theorem that all simply-laced rationally smooth Schubert varieties are smooth. Taken together, our results give a fairly complete geometric description of smooth and rationally smooth Schubert varieties using primarily combinatorial methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-015-1299-4</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5831
ispartof Mathematische annalen, 2016-10, Vol.366 (1-2), p.31-55
issn 0025-5831
1432-1807
language eng
recordid cdi_proquest_journals_1880863847
source SpringerNature Journals
subjects Bundling
Combinatorial analysis
Mathematics
Mathematics and Statistics
Theorems
title Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Billey%E2%80%93Postnikov%20decompositions%20and%20the%20fibre%20bundle%20structure%20of%20Schubert%20varieties&rft.jtitle=Mathematische%20annalen&rft.au=Richmond,%20Edward&rft.date=2016-10-01&rft.volume=366&rft.issue=1-2&rft.spage=31&rft.epage=55&rft.pages=31-55&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-015-1299-4&rft_dat=%3Cproquest_cross%3E1880863847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880863847&rft_id=info:pmid/&rfr_iscdi=true