Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties
A theorem of Ryan and Wolper states that a type A Schubert variety is smooth if and only if it is an iterated fibre bundle of Grassmannians. We extend this theorem to arbitrary finite type, showing that a Schubert variety in a generalized flag variety is rationally smooth if and only if it is an ite...
Gespeichert in:
Veröffentlicht in: | Mathematische annalen 2016-10, Vol.366 (1-2), p.31-55 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 55 |
---|---|
container_issue | 1-2 |
container_start_page | 31 |
container_title | Mathematische annalen |
container_volume | 366 |
creator | Richmond, Edward Slofstra, William |
description | A theorem of Ryan and Wolper states that a type
A
Schubert variety is smooth if and only if it is an iterated fibre bundle of Grassmannians. We extend this theorem to arbitrary finite type, showing that a Schubert variety in a generalized flag variety is rationally smooth if and only if it is an iterated fibre bundle of rationally smooth Grassmannian Schubert varieties. The proof depends on deep combinatorial results of Billey–Postnikov on Weyl groups. We determine all smooth and rationally smooth Grassmannian Schubert varieties, and give a new proof of Peterson’s theorem that all simply-laced rationally smooth Schubert varieties are smooth. Taken together, our results give a fairly complete geometric description of smooth and rationally smooth Schubert varieties using primarily combinatorial methods. |
doi_str_mv | 10.1007/s00208-015-1299-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880863847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880863847</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2e7aee8ae16f4bc16b4b3cdd42fafe43c9602e3b872fd956841443dc8b9387843</originalsourceid><addsrcrecordid>eNp1kMtKxDAUhoMoOI4-gLuA62pubdOlDt5gQMHLNjTpiZOx04xJOjA738E39EnsUBduXB045_v_Ax9Cp5ScU0LKi0gIIzIjNM8oq6pM7KEJFZxlVJJyH02Gc57lktNDdBTjkhDCCckn6PXKtS1svz-_Hn1MnXv3G9yA8au1jy4530Vcdw1OC8DW6QBY913TAo4p9Cb1w8Jb_GQWvYaQ8KYODpKDeIwObN1GOPmdU_Ryc_08u8vmD7f3s8t5ZjgtUsagrAFkDbSwQhtaaKG5aRrBbG1BcFMVhAHXsmS2qfJCCioEb4zUFZelFHyKzsbedfAfPcSklr4P3fBSUSmJLLgU5UDRkTLBxxjAqnVwqzpsFSVqp0-N-tSgT-30qV0zGzNxYLs3CH-a_w39AIXvdLI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880863847</pqid></control><display><type>article</type><title>Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties</title><source>SpringerNature Journals</source><creator>Richmond, Edward ; Slofstra, William</creator><creatorcontrib>Richmond, Edward ; Slofstra, William</creatorcontrib><description>A theorem of Ryan and Wolper states that a type
A
Schubert variety is smooth if and only if it is an iterated fibre bundle of Grassmannians. We extend this theorem to arbitrary finite type, showing that a Schubert variety in a generalized flag variety is rationally smooth if and only if it is an iterated fibre bundle of rationally smooth Grassmannian Schubert varieties. The proof depends on deep combinatorial results of Billey–Postnikov on Weyl groups. We determine all smooth and rationally smooth Grassmannian Schubert varieties, and give a new proof of Peterson’s theorem that all simply-laced rationally smooth Schubert varieties are smooth. Taken together, our results give a fairly complete geometric description of smooth and rationally smooth Schubert varieties using primarily combinatorial methods.</description><identifier>ISSN: 0025-5831</identifier><identifier>EISSN: 1432-1807</identifier><identifier>DOI: 10.1007/s00208-015-1299-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bundling ; Combinatorial analysis ; Mathematics ; Mathematics and Statistics ; Theorems</subject><ispartof>Mathematische annalen, 2016-10, Vol.366 (1-2), p.31-55</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2e7aee8ae16f4bc16b4b3cdd42fafe43c9602e3b872fd956841443dc8b9387843</citedby><cites>FETCH-LOGICAL-c316t-2e7aee8ae16f4bc16b4b3cdd42fafe43c9602e3b872fd956841443dc8b9387843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00208-015-1299-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00208-015-1299-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Richmond, Edward</creatorcontrib><creatorcontrib>Slofstra, William</creatorcontrib><title>Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties</title><title>Mathematische annalen</title><addtitle>Math. Ann</addtitle><description>A theorem of Ryan and Wolper states that a type
A
Schubert variety is smooth if and only if it is an iterated fibre bundle of Grassmannians. We extend this theorem to arbitrary finite type, showing that a Schubert variety in a generalized flag variety is rationally smooth if and only if it is an iterated fibre bundle of rationally smooth Grassmannian Schubert varieties. The proof depends on deep combinatorial results of Billey–Postnikov on Weyl groups. We determine all smooth and rationally smooth Grassmannian Schubert varieties, and give a new proof of Peterson’s theorem that all simply-laced rationally smooth Schubert varieties are smooth. Taken together, our results give a fairly complete geometric description of smooth and rationally smooth Schubert varieties using primarily combinatorial methods.</description><subject>Bundling</subject><subject>Combinatorial analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Theorems</subject><issn>0025-5831</issn><issn>1432-1807</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKxDAUhoMoOI4-gLuA62pubdOlDt5gQMHLNjTpiZOx04xJOjA738E39EnsUBduXB045_v_Ax9Cp5ScU0LKi0gIIzIjNM8oq6pM7KEJFZxlVJJyH02Gc57lktNDdBTjkhDCCckn6PXKtS1svz-_Hn1MnXv3G9yA8au1jy4530Vcdw1OC8DW6QBY913TAo4p9Cb1w8Jb_GQWvYaQ8KYODpKDeIwObN1GOPmdU_Ryc_08u8vmD7f3s8t5ZjgtUsagrAFkDbSwQhtaaKG5aRrBbG1BcFMVhAHXsmS2qfJCCioEb4zUFZelFHyKzsbedfAfPcSklr4P3fBSUSmJLLgU5UDRkTLBxxjAqnVwqzpsFSVqp0-N-tSgT-30qV0zGzNxYLs3CH-a_w39AIXvdLI</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Richmond, Edward</creator><creator>Slofstra, William</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties</title><author>Richmond, Edward ; Slofstra, William</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2e7aee8ae16f4bc16b4b3cdd42fafe43c9602e3b872fd956841443dc8b9387843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Bundling</topic><topic>Combinatorial analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richmond, Edward</creatorcontrib><creatorcontrib>Slofstra, William</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische annalen</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richmond, Edward</au><au>Slofstra, William</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties</atitle><jtitle>Mathematische annalen</jtitle><stitle>Math. Ann</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>366</volume><issue>1-2</issue><spage>31</spage><epage>55</epage><pages>31-55</pages><issn>0025-5831</issn><eissn>1432-1807</eissn><abstract>A theorem of Ryan and Wolper states that a type
A
Schubert variety is smooth if and only if it is an iterated fibre bundle of Grassmannians. We extend this theorem to arbitrary finite type, showing that a Schubert variety in a generalized flag variety is rationally smooth if and only if it is an iterated fibre bundle of rationally smooth Grassmannian Schubert varieties. The proof depends on deep combinatorial results of Billey–Postnikov on Weyl groups. We determine all smooth and rationally smooth Grassmannian Schubert varieties, and give a new proof of Peterson’s theorem that all simply-laced rationally smooth Schubert varieties are smooth. Taken together, our results give a fairly complete geometric description of smooth and rationally smooth Schubert varieties using primarily combinatorial methods.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00208-015-1299-4</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-5831 |
ispartof | Mathematische annalen, 2016-10, Vol.366 (1-2), p.31-55 |
issn | 0025-5831 1432-1807 |
language | eng |
recordid | cdi_proquest_journals_1880863847 |
source | SpringerNature Journals |
subjects | Bundling Combinatorial analysis Mathematics Mathematics and Statistics Theorems |
title | Billey–Postnikov decompositions and the fibre bundle structure of Schubert varieties |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T05%3A30%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Billey%E2%80%93Postnikov%20decompositions%20and%20the%20fibre%20bundle%20structure%20of%20Schubert%20varieties&rft.jtitle=Mathematische%20annalen&rft.au=Richmond,%20Edward&rft.date=2016-10-01&rft.volume=366&rft.issue=1-2&rft.spage=31&rft.epage=55&rft.pages=31-55&rft.issn=0025-5831&rft.eissn=1432-1807&rft_id=info:doi/10.1007/s00208-015-1299-4&rft_dat=%3Cproquest_cross%3E1880863847%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880863847&rft_id=info:pmid/&rfr_iscdi=true |