Wild ramification kinks
Given a branched cover f : Y → X between smooth projective curves over a non-archimedean mixed-characteristic local field and an open rigid disk D ⊂ X , we study the question under which conditions the inverse image f - 1 ( D ) is again an open disk. More generally, if the cover f varies in an analy...
Gespeichert in:
Veröffentlicht in: | Research in the mathematical sciences 2016-10, Vol.3 (1), p.1-27, Article 21 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Research in the mathematical sciences |
container_volume | 3 |
creator | Obus, Andrew Wewers, Stefan |
description | Given a branched cover
f
:
Y
→
X
between smooth projective curves over a non-archimedean mixed-characteristic local field and an open rigid disk
D
⊂
X
, we study the question under which conditions the inverse image
f
-
1
(
D
)
is again an open disk. More generally, if the cover
f
varies in an analytic family, is this true at least for some member of the family? Our main result gives a criterion for this to happen. |
doi_str_mv | 10.1186/s40687-016-0070-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880861355</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880861355</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-12437804ab3e3de3e80336cbba4c94bd7cff6fece3d6687aa7892337a4f963e13</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWGrP4q3gOTqzkybZoxS_oOBF8Riy2UTSj92abA_-96ash148zcC89-bxY-wG4Q5Ry_ssQGrFASUHUMDhjE0qrBWvtVDnJ_slm-W8BgBUkgTBhF1_xm07T3YXQ3R2iH0338Ruk6_YRbDb7Gd_c8o-nh7fly989fb8unxYcUeIA8dKkNIgbEOeWk9eA5F0TWOFq0XTKheCDN6VoywVrVW6roiUFaGW5JGm7HbM3af---DzYNb9IXXlpUGtQUukxaKocFS51OecfDD7FHc2_RgEc0RgRgSmIDBHBAaKpxo9uWi7L59Okv81_QKA7lwr</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880861355</pqid></control><display><type>article</type><title>Wild ramification kinks</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Obus, Andrew ; Wewers, Stefan</creator><creatorcontrib>Obus, Andrew ; Wewers, Stefan</creatorcontrib><description>Given a branched cover
f
:
Y
→
X
between smooth projective curves over a non-archimedean mixed-characteristic local field and an open rigid disk
D
⊂
X
, we study the question under which conditions the inverse image
f
-
1
(
D
)
is again an open disk. More generally, if the cover
f
varies in an analytic family, is this true at least for some member of the family? Our main result gives a criterion for this to happen.</description><identifier>ISSN: 2197-9847</identifier><identifier>ISSN: 2522-0144</identifier><identifier>EISSN: 2197-9847</identifier><identifier>DOI: 10.1186/s40687-016-0070-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Computational Mathematics and Numerical Analysis ; Mathematics ; Mathematics and Statistics</subject><ispartof>Research in the mathematical sciences, 2016-10, Vol.3 (1), p.1-27, Article 21</ispartof><rights>The Author(s) 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-12437804ab3e3de3e80336cbba4c94bd7cff6fece3d6687aa7892337a4f963e13</cites><orcidid>0000-0003-2358-4726</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1186/s40687-016-0070-0$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1186/s40687-016-0070-0$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Obus, Andrew</creatorcontrib><creatorcontrib>Wewers, Stefan</creatorcontrib><title>Wild ramification kinks</title><title>Research in the mathematical sciences</title><addtitle>Res Math Sci</addtitle><description>Given a branched cover
f
:
Y
→
X
between smooth projective curves over a non-archimedean mixed-characteristic local field and an open rigid disk
D
⊂
X
, we study the question under which conditions the inverse image
f
-
1
(
D
)
is again an open disk. More generally, if the cover
f
varies in an analytic family, is this true at least for some member of the family? Our main result gives a criterion for this to happen.</description><subject>Applications of Mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>2197-9847</issn><issn>2522-0144</issn><issn>2197-9847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><recordid>eNp1kM1LAzEQxYMoWGrP4q3gOTqzkybZoxS_oOBF8Riy2UTSj92abA_-96ash148zcC89-bxY-wG4Q5Ry_ssQGrFASUHUMDhjE0qrBWvtVDnJ_slm-W8BgBUkgTBhF1_xm07T3YXQ3R2iH0338Ruk6_YRbDb7Gd_c8o-nh7fly989fb8unxYcUeIA8dKkNIgbEOeWk9eA5F0TWOFq0XTKheCDN6VoywVrVW6roiUFaGW5JGm7HbM3af---DzYNb9IXXlpUGtQUukxaKocFS51OecfDD7FHc2_RgEc0RgRgSmIDBHBAaKpxo9uWi7L59Okv81_QKA7lwr</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Obus, Andrew</creator><creator>Wewers, Stefan</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2358-4726</orcidid></search><sort><creationdate>20161001</creationdate><title>Wild ramification kinks</title><author>Obus, Andrew ; Wewers, Stefan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-12437804ab3e3de3e80336cbba4c94bd7cff6fece3d6687aa7892337a4f963e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Obus, Andrew</creatorcontrib><creatorcontrib>Wewers, Stefan</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><jtitle>Research in the mathematical sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Obus, Andrew</au><au>Wewers, Stefan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wild ramification kinks</atitle><jtitle>Research in the mathematical sciences</jtitle><stitle>Res Math Sci</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>3</volume><issue>1</issue><spage>1</spage><epage>27</epage><pages>1-27</pages><artnum>21</artnum><issn>2197-9847</issn><issn>2522-0144</issn><eissn>2197-9847</eissn><abstract>Given a branched cover
f
:
Y
→
X
between smooth projective curves over a non-archimedean mixed-characteristic local field and an open rigid disk
D
⊂
X
, we study the question under which conditions the inverse image
f
-
1
(
D
)
is again an open disk. More generally, if the cover
f
varies in an analytic family, is this true at least for some member of the family? Our main result gives a criterion for this to happen.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s40687-016-0070-0</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-2358-4726</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2197-9847 |
ispartof | Research in the mathematical sciences, 2016-10, Vol.3 (1), p.1-27, Article 21 |
issn | 2197-9847 2522-0144 2197-9847 |
language | eng |
recordid | cdi_proquest_journals_1880861355 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Computational Mathematics and Numerical Analysis Mathematics Mathematics and Statistics |
title | Wild ramification kinks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A02%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wild%20ramification%20kinks&rft.jtitle=Research%20in%20the%20mathematical%20sciences&rft.au=Obus,%20Andrew&rft.date=2016-10-01&rft.volume=3&rft.issue=1&rft.spage=1&rft.epage=27&rft.pages=1-27&rft.artnum=21&rft.issn=2197-9847&rft.eissn=2197-9847&rft_id=info:doi/10.1186/s40687-016-0070-0&rft_dat=%3Cproquest_cross%3E1880861355%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880861355&rft_id=info:pmid/&rfr_iscdi=true |