Resilient reaction of a pipeline to an internal impact pressure

The theory of dynamic stability of a the pipeline is developed on the basis of the linear bending equation, an assumption that the cross section is normal to the deformed axis of the pipe, the incompressibility of the transported fluid, and the instant establishment of impact pressure along its enti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Doklady. a journal of the Russian Academy of Sciences. Physics 2016-09, Vol.61 (9), p.453-456
Hauptverfasser: Ganiev, R. F., Ilgamov, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 456
container_issue 9
container_start_page 453
container_title Doklady. a journal of the Russian Academy of Sciences. Physics
container_volume 61
creator Ganiev, R. F.
Ilgamov, M. A.
description The theory of dynamic stability of a the pipeline is developed on the basis of the linear bending equation, an assumption that the cross section is normal to the deformed axis of the pipe, the incompressibility of the transported fluid, and the instant establishment of impact pressure along its entire length. The calculation scheme is as follows: a pipe connecting two volumes and a pipe with one closed end and with a piston acting at a fluid at the other end. The relations between the input parameters for determining the dynamic reaction and the stress−strained state of the pipeline under the action of the internal shock wave are presented.
doi_str_mv 10.1134/S1028335816090044
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880861172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880861172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-182e2443792feb190ff69e36d3af173412ccd748d6187a3d3894a61aeff43b6e3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VMJpsmJ5FFV2FB8M-5ZNuJZOmmNWkPfnu7rAdBPM2D93uP4TF2CeIaANXNKwhpEBcGtLBCKHXEZrDQstBW4PGkJ7vY-6fsLOetEMIiwozdvlAObaA48ESuHkIXeee5433oqQ2R-NBxF3mIA6XoWh52_YTxPlHOY6JzduJdm-ni587Z-8P92_KxWD-vnpZ366KW2gwFGElSKSyt9LQBK7zXllA36DyUqEDWdVMq02gwpcMGjVVOgyPvFW404ZxdHXr71H2OlIdq2437h3IFxgijAUo5UXCg6tTlnMhXfQo7l74qENV-p-rPTlNGHjJ5YuMHpV_N_4a-AcDSaIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880861172</pqid></control><display><type>article</type><title>Resilient reaction of a pipeline to an internal impact pressure</title><source>SpringerLink Journals</source><creator>Ganiev, R. F. ; Ilgamov, M. A.</creator><creatorcontrib>Ganiev, R. F. ; Ilgamov, M. A.</creatorcontrib><description>The theory of dynamic stability of a the pipeline is developed on the basis of the linear bending equation, an assumption that the cross section is normal to the deformed axis of the pipe, the incompressibility of the transported fluid, and the instant establishment of impact pressure along its entire length. The calculation scheme is as follows: a pipe connecting two volumes and a pipe with one closed end and with a piston acting at a fluid at the other end. The relations between the input parameters for determining the dynamic reaction and the stress−strained state of the pipeline under the action of the internal shock wave are presented.</description><identifier>ISSN: 1028-3358</identifier><identifier>EISSN: 1562-6903</identifier><identifier>DOI: 10.1134/S1028335816090044</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical Mechanics ; Dynamic stability ; Impact loads ; Incompressibility ; Internal pressure ; Mathematical and Computational Physics ; Mechanics ; Physics ; Physics and Astronomy ; Pipelines ; Pipes ; Shock waves ; Theoretical</subject><ispartof>Doklady. a journal of the Russian Academy of Sciences. Physics, 2016-09, Vol.61 (9), p.453-456</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-182e2443792feb190ff69e36d3af173412ccd748d6187a3d3894a61aeff43b6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1028335816090044$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1028335816090044$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ganiev, R. F.</creatorcontrib><creatorcontrib>Ilgamov, M. A.</creatorcontrib><title>Resilient reaction of a pipeline to an internal impact pressure</title><title>Doklady. a journal of the Russian Academy of Sciences. Physics</title><addtitle>Dokl. Phys</addtitle><description>The theory of dynamic stability of a the pipeline is developed on the basis of the linear bending equation, an assumption that the cross section is normal to the deformed axis of the pipe, the incompressibility of the transported fluid, and the instant establishment of impact pressure along its entire length. The calculation scheme is as follows: a pipe connecting two volumes and a pipe with one closed end and with a piston acting at a fluid at the other end. The relations between the input parameters for determining the dynamic reaction and the stress−strained state of the pipeline under the action of the internal shock wave are presented.</description><subject>Classical Mechanics</subject><subject>Dynamic stability</subject><subject>Impact loads</subject><subject>Incompressibility</subject><subject>Internal pressure</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pipelines</subject><subject>Pipes</subject><subject>Shock waves</subject><subject>Theoretical</subject><issn>1028-3358</issn><issn>1562-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VMJpsmJ5FFV2FB8M-5ZNuJZOmmNWkPfnu7rAdBPM2D93uP4TF2CeIaANXNKwhpEBcGtLBCKHXEZrDQstBW4PGkJ7vY-6fsLOetEMIiwozdvlAObaA48ESuHkIXeee5433oqQ2R-NBxF3mIA6XoWh52_YTxPlHOY6JzduJdm-ni587Z-8P92_KxWD-vnpZ366KW2gwFGElSKSyt9LQBK7zXllA36DyUqEDWdVMq02gwpcMGjVVOgyPvFW404ZxdHXr71H2OlIdq2437h3IFxgijAUo5UXCg6tTlnMhXfQo7l74qENV-p-rPTlNGHjJ5YuMHpV_N_4a-AcDSaIw</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Ganiev, R. F.</creator><creator>Ilgamov, M. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Resilient reaction of a pipeline to an internal impact pressure</title><author>Ganiev, R. F. ; Ilgamov, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-182e2443792feb190ff69e36d3af173412ccd748d6187a3d3894a61aeff43b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical Mechanics</topic><topic>Dynamic stability</topic><topic>Impact loads</topic><topic>Incompressibility</topic><topic>Internal pressure</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pipelines</topic><topic>Pipes</topic><topic>Shock waves</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganiev, R. F.</creatorcontrib><creatorcontrib>Ilgamov, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. a journal of the Russian Academy of Sciences. Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganiev, R. F.</au><au>Ilgamov, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resilient reaction of a pipeline to an internal impact pressure</atitle><jtitle>Doklady. a journal of the Russian Academy of Sciences. Physics</jtitle><stitle>Dokl. Phys</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>61</volume><issue>9</issue><spage>453</spage><epage>456</epage><pages>453-456</pages><issn>1028-3358</issn><eissn>1562-6903</eissn><abstract>The theory of dynamic stability of a the pipeline is developed on the basis of the linear bending equation, an assumption that the cross section is normal to the deformed axis of the pipe, the incompressibility of the transported fluid, and the instant establishment of impact pressure along its entire length. The calculation scheme is as follows: a pipe connecting two volumes and a pipe with one closed end and with a piston acting at a fluid at the other end. The relations between the input parameters for determining the dynamic reaction and the stress−strained state of the pipeline under the action of the internal shock wave are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1028335816090044</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1028-3358
ispartof Doklady. a journal of the Russian Academy of Sciences. Physics, 2016-09, Vol.61 (9), p.453-456
issn 1028-3358
1562-6903
language eng
recordid cdi_proquest_journals_1880861172
source SpringerLink Journals
subjects Classical Mechanics
Dynamic stability
Impact loads
Incompressibility
Internal pressure
Mathematical and Computational Physics
Mechanics
Physics
Physics and Astronomy
Pipelines
Pipes
Shock waves
Theoretical
title Resilient reaction of a pipeline to an internal impact pressure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resilient%20reaction%20of%20a%20pipeline%20to%20an%20internal%20impact%20pressure&rft.jtitle=Doklady.%20a%20journal%20of%20the%20Russian%20Academy%20of%20Sciences.%20Physics&rft.au=Ganiev,%20R.%20F.&rft.date=2016-09-01&rft.volume=61&rft.issue=9&rft.spage=453&rft.epage=456&rft.pages=453-456&rft.issn=1028-3358&rft.eissn=1562-6903&rft_id=info:doi/10.1134/S1028335816090044&rft_dat=%3Cproquest_cross%3E1880861172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880861172&rft_id=info:pmid/&rfr_iscdi=true