Resilient reaction of a pipeline to an internal impact pressure
The theory of dynamic stability of a the pipeline is developed on the basis of the linear bending equation, an assumption that the cross section is normal to the deformed axis of the pipe, the incompressibility of the transported fluid, and the instant establishment of impact pressure along its enti...
Gespeichert in:
Veröffentlicht in: | Doklady. a journal of the Russian Academy of Sciences. Physics 2016-09, Vol.61 (9), p.453-456 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 456 |
---|---|
container_issue | 9 |
container_start_page | 453 |
container_title | Doklady. a journal of the Russian Academy of Sciences. Physics |
container_volume | 61 |
creator | Ganiev, R. F. Ilgamov, M. A. |
description | The theory of dynamic stability of a the pipeline is developed on the basis of the linear bending equation, an assumption that the cross section is normal to the deformed axis of the pipe, the incompressibility of the transported fluid, and the instant establishment of impact pressure along its entire length. The calculation scheme is as follows: a pipe connecting two volumes and a pipe with one closed end and with a piston acting at a fluid at the other end. The relations between the input parameters for determining the dynamic reaction and the stress−strained state of the pipeline under the action of the internal shock wave are presented. |
doi_str_mv | 10.1134/S1028335816090044 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880861172</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880861172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-182e2443792feb190ff69e36d3af173412ccd748d6187a3d3894a61aeff43b6e3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VMJpsmJ5FFV2FB8M-5ZNuJZOmmNWkPfnu7rAdBPM2D93uP4TF2CeIaANXNKwhpEBcGtLBCKHXEZrDQstBW4PGkJ7vY-6fsLOetEMIiwozdvlAObaA48ESuHkIXeee5433oqQ2R-NBxF3mIA6XoWh52_YTxPlHOY6JzduJdm-ni587Z-8P92_KxWD-vnpZ366KW2gwFGElSKSyt9LQBK7zXllA36DyUqEDWdVMq02gwpcMGjVVOgyPvFW404ZxdHXr71H2OlIdq2437h3IFxgijAUo5UXCg6tTlnMhXfQo7l74qENV-p-rPTlNGHjJ5YuMHpV_N_4a-AcDSaIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880861172</pqid></control><display><type>article</type><title>Resilient reaction of a pipeline to an internal impact pressure</title><source>SpringerLink Journals</source><creator>Ganiev, R. F. ; Ilgamov, M. A.</creator><creatorcontrib>Ganiev, R. F. ; Ilgamov, M. A.</creatorcontrib><description>The theory of dynamic stability of a the pipeline is developed on the basis of the linear bending equation, an assumption that the cross section is normal to the deformed axis of the pipe, the incompressibility of the transported fluid, and the instant establishment of impact pressure along its entire length. The calculation scheme is as follows: a pipe connecting two volumes and a pipe with one closed end and with a piston acting at a fluid at the other end. The relations between the input parameters for determining the dynamic reaction and the stress−strained state of the pipeline under the action of the internal shock wave are presented.</description><identifier>ISSN: 1028-3358</identifier><identifier>EISSN: 1562-6903</identifier><identifier>DOI: 10.1134/S1028335816090044</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Classical Mechanics ; Dynamic stability ; Impact loads ; Incompressibility ; Internal pressure ; Mathematical and Computational Physics ; Mechanics ; Physics ; Physics and Astronomy ; Pipelines ; Pipes ; Shock waves ; Theoretical</subject><ispartof>Doklady. a journal of the Russian Academy of Sciences. Physics, 2016-09, Vol.61 (9), p.453-456</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-182e2443792feb190ff69e36d3af173412ccd748d6187a3d3894a61aeff43b6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1028335816090044$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1028335816090044$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ganiev, R. F.</creatorcontrib><creatorcontrib>Ilgamov, M. A.</creatorcontrib><title>Resilient reaction of a pipeline to an internal impact pressure</title><title>Doklady. a journal of the Russian Academy of Sciences. Physics</title><addtitle>Dokl. Phys</addtitle><description>The theory of dynamic stability of a the pipeline is developed on the basis of the linear bending equation, an assumption that the cross section is normal to the deformed axis of the pipe, the incompressibility of the transported fluid, and the instant establishment of impact pressure along its entire length. The calculation scheme is as follows: a pipe connecting two volumes and a pipe with one closed end and with a piston acting at a fluid at the other end. The relations between the input parameters for determining the dynamic reaction and the stress−strained state of the pipeline under the action of the internal shock wave are presented.</description><subject>Classical Mechanics</subject><subject>Dynamic stability</subject><subject>Impact loads</subject><subject>Incompressibility</subject><subject>Internal pressure</subject><subject>Mathematical and Computational Physics</subject><subject>Mechanics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Pipelines</subject><subject>Pipes</subject><subject>Shock waves</subject><subject>Theoretical</subject><issn>1028-3358</issn><issn>1562-6903</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9VMJpsmJ5FFV2FB8M-5ZNuJZOmmNWkPfnu7rAdBPM2D93uP4TF2CeIaANXNKwhpEBcGtLBCKHXEZrDQstBW4PGkJ7vY-6fsLOetEMIiwozdvlAObaA48ESuHkIXeee5433oqQ2R-NBxF3mIA6XoWh52_YTxPlHOY6JzduJdm-ni587Z-8P92_KxWD-vnpZ366KW2gwFGElSKSyt9LQBK7zXllA36DyUqEDWdVMq02gwpcMGjVVOgyPvFW404ZxdHXr71H2OlIdq2437h3IFxgijAUo5UXCg6tTlnMhXfQo7l74qENV-p-rPTlNGHjJ5YuMHpV_N_4a-AcDSaIw</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Ganiev, R. F.</creator><creator>Ilgamov, M. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>Resilient reaction of a pipeline to an internal impact pressure</title><author>Ganiev, R. F. ; Ilgamov, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-182e2443792feb190ff69e36d3af173412ccd748d6187a3d3894a61aeff43b6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classical Mechanics</topic><topic>Dynamic stability</topic><topic>Impact loads</topic><topic>Incompressibility</topic><topic>Internal pressure</topic><topic>Mathematical and Computational Physics</topic><topic>Mechanics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Pipelines</topic><topic>Pipes</topic><topic>Shock waves</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganiev, R. F.</creatorcontrib><creatorcontrib>Ilgamov, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Doklady. a journal of the Russian Academy of Sciences. Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganiev, R. F.</au><au>Ilgamov, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resilient reaction of a pipeline to an internal impact pressure</atitle><jtitle>Doklady. a journal of the Russian Academy of Sciences. Physics</jtitle><stitle>Dokl. Phys</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>61</volume><issue>9</issue><spage>453</spage><epage>456</epage><pages>453-456</pages><issn>1028-3358</issn><eissn>1562-6903</eissn><abstract>The theory of dynamic stability of a the pipeline is developed on the basis of the linear bending equation, an assumption that the cross section is normal to the deformed axis of the pipe, the incompressibility of the transported fluid, and the instant establishment of impact pressure along its entire length. The calculation scheme is as follows: a pipe connecting two volumes and a pipe with one closed end and with a piston acting at a fluid at the other end. The relations between the input parameters for determining the dynamic reaction and the stress−strained state of the pipeline under the action of the internal shock wave are presented.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1028335816090044</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1028-3358 |
ispartof | Doklady. a journal of the Russian Academy of Sciences. Physics, 2016-09, Vol.61 (9), p.453-456 |
issn | 1028-3358 1562-6903 |
language | eng |
recordid | cdi_proquest_journals_1880861172 |
source | SpringerLink Journals |
subjects | Classical Mechanics Dynamic stability Impact loads Incompressibility Internal pressure Mathematical and Computational Physics Mechanics Physics Physics and Astronomy Pipelines Pipes Shock waves Theoretical |
title | Resilient reaction of a pipeline to an internal impact pressure |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A44%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resilient%20reaction%20of%20a%20pipeline%20to%20an%20internal%20impact%20pressure&rft.jtitle=Doklady.%20a%20journal%20of%20the%20Russian%20Academy%20of%20Sciences.%20Physics&rft.au=Ganiev,%20R.%20F.&rft.date=2016-09-01&rft.volume=61&rft.issue=9&rft.spage=453&rft.epage=456&rft.pages=453-456&rft.issn=1028-3358&rft.eissn=1562-6903&rft_id=info:doi/10.1134/S1028335816090044&rft_dat=%3Cproquest_cross%3E1880861172%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880861172&rft_id=info:pmid/&rfr_iscdi=true |