Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model

We consider the fluctuations of the free energy for the 2-spin spherical Sherrington–Kirkpatrick model with no magnetic field. We show that the law of the fluctuations converges to the Gaussian distribution when the temperature is above the critical temperature, and to the GOE Tracy–Widom distributi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2016-10, Vol.165 (2), p.185-224
Hauptverfasser: Baik, Jinho, Lee, Ji Oon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 224
container_issue 2
container_start_page 185
container_title Journal of statistical physics
container_volume 165
creator Baik, Jinho
Lee, Ji Oon
description We consider the fluctuations of the free energy for the 2-spin spherical Sherrington–Kirkpatrick model with no magnetic field. We show that the law of the fluctuations converges to the Gaussian distribution when the temperature is above the critical temperature, and to the GOE Tracy–Widom distribution when the temperature is below the critical temperature. The orders of the fluctuations are markedly different in these two regimes. A universality of the limit law is also proved.
doi_str_mv 10.1007/s10955-016-1610-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880860836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470718454</galeid><sourcerecordid>A470718454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-2c85b3e9c0c7724cdb0b137f470f4ed1176a422b8cdae411116556831f0539293</originalsourceid><addsrcrecordid>eNp1kLFOwzAQQC0EEqXwAWyRmFPunDh2xqpqAVEEUmG2XMdp06ZxsNOhG__AH_IluApILNiDT-d7d6dHyDXCCAH4rUfIGYsBsxgzhBhOyAAZp3GeYXJKBgCUxilHdk4uvN8AQC5yNiAvs3qvu73qKtv4yJZRtzbRzBkTTRvjVoff1KJdG1dpVUeLELiqWXW2-fr4fKzctlVd-NpGT7Yw9SU5K1XtzdXPOyRvs-nr5D6eP989TMbzWCeMdTHVgi0Tk2vQnNNUF0tYYsLLlEOZmgKRZyqldCl0oUyK4WSMZSLBEliS0zwZkpu-b-vs-974Tm7s3jVhpEQhQGQgkixUjfqqlaqNrJrSdk7pcAuzq7RtTFmF_DhM5ShSlgYAe0A7670zpWxdtVPuIBHk0bTsTctgWh5NSwgM7RnfHsUY92eVf6Fv0rCAFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880860836</pqid></control><display><type>article</type><title>Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model</title><source>SpringerLink Journals - AutoHoldings</source><creator>Baik, Jinho ; Lee, Ji Oon</creator><creatorcontrib>Baik, Jinho ; Lee, Ji Oon</creatorcontrib><description>We consider the fluctuations of the free energy for the 2-spin spherical Sherrington–Kirkpatrick model with no magnetic field. We show that the law of the fluctuations converges to the Gaussian distribution when the temperature is above the critical temperature, and to the GOE Tracy–Widom distribution when the temperature is below the critical temperature. The orders of the fluctuations are markedly different in these two regimes. A universality of the limit law is also proved.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-016-1610-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Critical temperature ; Free energy ; Magnetic fields ; Mathematical and Computational Physics ; Normal distribution ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2016-10, Vol.165 (2), p.185-224</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-2c85b3e9c0c7724cdb0b137f470f4ed1176a422b8cdae411116556831f0539293</citedby><cites>FETCH-LOGICAL-c355t-2c85b3e9c0c7724cdb0b137f470f4ed1176a422b8cdae411116556831f0539293</cites><orcidid>0000-0002-0729-5652</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-016-1610-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-016-1610-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Baik, Jinho</creatorcontrib><creatorcontrib>Lee, Ji Oon</creatorcontrib><title>Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We consider the fluctuations of the free energy for the 2-spin spherical Sherrington–Kirkpatrick model with no magnetic field. We show that the law of the fluctuations converges to the Gaussian distribution when the temperature is above the critical temperature, and to the GOE Tracy–Widom distribution when the temperature is below the critical temperature. The orders of the fluctuations are markedly different in these two regimes. A universality of the limit law is also proved.</description><subject>Critical temperature</subject><subject>Free energy</subject><subject>Magnetic fields</subject><subject>Mathematical and Computational Physics</subject><subject>Normal distribution</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kLFOwzAQQC0EEqXwAWyRmFPunDh2xqpqAVEEUmG2XMdp06ZxsNOhG__AH_IluApILNiDT-d7d6dHyDXCCAH4rUfIGYsBsxgzhBhOyAAZp3GeYXJKBgCUxilHdk4uvN8AQC5yNiAvs3qvu73qKtv4yJZRtzbRzBkTTRvjVoff1KJdG1dpVUeLELiqWXW2-fr4fKzctlVd-NpGT7Yw9SU5K1XtzdXPOyRvs-nr5D6eP989TMbzWCeMdTHVgi0Tk2vQnNNUF0tYYsLLlEOZmgKRZyqldCl0oUyK4WSMZSLBEliS0zwZkpu-b-vs-974Tm7s3jVhpEQhQGQgkixUjfqqlaqNrJrSdk7pcAuzq7RtTFmF_DhM5ShSlgYAe0A7670zpWxdtVPuIBHk0bTsTctgWh5NSwgM7RnfHsUY92eVf6Fv0rCAFQ</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Baik, Jinho</creator><creator>Lee, Ji Oon</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0729-5652</orcidid></search><sort><creationdate>20161001</creationdate><title>Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model</title><author>Baik, Jinho ; Lee, Ji Oon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-2c85b3e9c0c7724cdb0b137f470f4ed1176a422b8cdae411116556831f0539293</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Critical temperature</topic><topic>Free energy</topic><topic>Magnetic fields</topic><topic>Mathematical and Computational Physics</topic><topic>Normal distribution</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baik, Jinho</creatorcontrib><creatorcontrib>Lee, Ji Oon</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baik, Jinho</au><au>Lee, Ji Oon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>165</volume><issue>2</issue><spage>185</spage><epage>224</epage><pages>185-224</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We consider the fluctuations of the free energy for the 2-spin spherical Sherrington–Kirkpatrick model with no magnetic field. We show that the law of the fluctuations converges to the Gaussian distribution when the temperature is above the critical temperature, and to the GOE Tracy–Widom distribution when the temperature is below the critical temperature. The orders of the fluctuations are markedly different in these two regimes. A universality of the limit law is also proved.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-016-1610-0</doi><tpages>40</tpages><orcidid>https://orcid.org/0000-0002-0729-5652</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2016-10, Vol.165 (2), p.185-224
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_1880860836
source SpringerLink Journals - AutoHoldings
subjects Critical temperature
Free energy
Magnetic fields
Mathematical and Computational Physics
Normal distribution
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title Fluctuations of the Free Energy of the Spherical Sherrington–Kirkpatrick Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A23%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fluctuations%20of%20the%20Free%20Energy%20of%20the%20Spherical%20Sherrington%E2%80%93Kirkpatrick%20Model&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Baik,%20Jinho&rft.date=2016-10-01&rft.volume=165&rft.issue=2&rft.spage=185&rft.epage=224&rft.pages=185-224&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-016-1610-0&rft_dat=%3Cgale_proqu%3EA470718454%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880860836&rft_id=info:pmid/&rft_galeid=A470718454&rfr_iscdi=true