Kinetic analysis using thermogravimetric analysis for nonisothermal pyrolysis of vacuum residue
Pyrolysis is a relatively simple upgrading process that can produce light oil from unconventional oil and heavy residue. For effective utilization of pyrolysis processes, it is important to understand its kinetic parameters. In this study, the nonisothermal pyrolysis of vacuum residue (VR) was analy...
Gespeichert in:
Veröffentlicht in: | Journal of thermal analysis and calorimetry 2016-11, Vol.126 (2), p.933-941 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 941 |
---|---|
container_issue | 2 |
container_start_page | 933 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 126 |
creator | Shin, Sangcheol Im, Soo Ik Nho, Nam Sun Lee, Ki Bong |
description | Pyrolysis is a relatively simple upgrading process that can produce light oil from unconventional oil and heavy residue. For effective utilization of pyrolysis processes, it is important to understand its kinetic parameters. In this study, the nonisothermal pyrolysis of vacuum residue (VR) was analyzed using a thermogravimetric analyzer and the activation energy of the VR pyrolysis reaction was estimated by several theoretical methods. It was found that isoconversional methods were more suitable than nonisoconversional methods for analyzing complex pyrolysis reaction of VR. The Friedman method, a differential isoconversional method, is thought to be the most appropriate among the various methods tested because it can describe the complexity of the pyrolysis reaction of VR and there is no need for information of exact reaction model and mathematical assumptions for temperature integral, which can raise systematic errors in the kinetic analysis. Finally, the kinetic parameters of VR pyrolysis were determined based on the results of Friedman analysis and distributed activation energy model (DAEM), and VR pyrolysis behavior was well expressed with the kinetic parameters obtained from DAEM analysis. |
doi_str_mv | 10.1007/s10973-016-5568-6 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880860017</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A470693881</galeid><sourcerecordid>A470693881</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-ba37e8e95e309d432e062810ff3a1b25a1a32873def7a270c0d7d220bbc517993</originalsourceid><addsrcrecordid>eNp1kU1LxDAQhosoqKs_wFvBk4euk2Sbj6OIH4uC4Mc5ZNtJzbJt1qRd3H9vtB7Wg-SQIfM8YZg3y84ITAmAuIwElGAFEF6UJZcF38uOSCllQRXl-6lmqeakhMPsOMYlACgF5CjTD67D3lW56cxqG13Mh-i6Ju_fMbS-CWbjWuzDLmB9yDvfueh_ILPK19vgx563-cZUw9DmAaOrBzzJDqxZRTz9vSfZ2-3N6_V98fh0N7--eiyqGeV9sTBMoERVIgNVzxhF4FQSsJYZsqClIYZRKViNVhgqoIJa1JTCYlGVRCjFJtn5-O86-I8BY6-Xfghp5KiJlCA5ABGJmo5UY1aoXWd9H0yVTo2tq3yH1qX3q5kArtLCSBIu_giJ6fGzb8wQo56_PP9lychWwccY0Op1cK0JW01Af4ekx5B0Ckl_h6R5cujoxMR2DYadsf-VvgC1FJUp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880860017</pqid></control><display><type>article</type><title>Kinetic analysis using thermogravimetric analysis for nonisothermal pyrolysis of vacuum residue</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shin, Sangcheol ; Im, Soo Ik ; Nho, Nam Sun ; Lee, Ki Bong</creator><creatorcontrib>Shin, Sangcheol ; Im, Soo Ik ; Nho, Nam Sun ; Lee, Ki Bong</creatorcontrib><description>Pyrolysis is a relatively simple upgrading process that can produce light oil from unconventional oil and heavy residue. For effective utilization of pyrolysis processes, it is important to understand its kinetic parameters. In this study, the nonisothermal pyrolysis of vacuum residue (VR) was analyzed using a thermogravimetric analyzer and the activation energy of the VR pyrolysis reaction was estimated by several theoretical methods. It was found that isoconversional methods were more suitable than nonisoconversional methods for analyzing complex pyrolysis reaction of VR. The Friedman method, a differential isoconversional method, is thought to be the most appropriate among the various methods tested because it can describe the complexity of the pyrolysis reaction of VR and there is no need for information of exact reaction model and mathematical assumptions for temperature integral, which can raise systematic errors in the kinetic analysis. Finally, the kinetic parameters of VR pyrolysis were determined based on the results of Friedman analysis and distributed activation energy model (DAEM), and VR pyrolysis behavior was well expressed with the kinetic parameters obtained from DAEM analysis.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-016-5568-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Activation analysis ; Activation energy ; Analysis ; Analytical Chemistry ; Chemistry ; Chemistry and Materials Science ; Complexity ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Parameters ; Physical Chemistry ; Polymer Sciences ; Pyrolysis ; Residues ; Systematic errors ; Thermogravimetric analysis</subject><ispartof>Journal of thermal analysis and calorimetry, 2016-11, Vol.126 (2), p.933-941</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-ba37e8e95e309d432e062810ff3a1b25a1a32873def7a270c0d7d220bbc517993</citedby><cites>FETCH-LOGICAL-c426t-ba37e8e95e309d432e062810ff3a1b25a1a32873def7a270c0d7d220bbc517993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10973-016-5568-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10973-016-5568-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Shin, Sangcheol</creatorcontrib><creatorcontrib>Im, Soo Ik</creatorcontrib><creatorcontrib>Nho, Nam Sun</creatorcontrib><creatorcontrib>Lee, Ki Bong</creatorcontrib><title>Kinetic analysis using thermogravimetric analysis for nonisothermal pyrolysis of vacuum residue</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>Pyrolysis is a relatively simple upgrading process that can produce light oil from unconventional oil and heavy residue. For effective utilization of pyrolysis processes, it is important to understand its kinetic parameters. In this study, the nonisothermal pyrolysis of vacuum residue (VR) was analyzed using a thermogravimetric analyzer and the activation energy of the VR pyrolysis reaction was estimated by several theoretical methods. It was found that isoconversional methods were more suitable than nonisoconversional methods for analyzing complex pyrolysis reaction of VR. The Friedman method, a differential isoconversional method, is thought to be the most appropriate among the various methods tested because it can describe the complexity of the pyrolysis reaction of VR and there is no need for information of exact reaction model and mathematical assumptions for temperature integral, which can raise systematic errors in the kinetic analysis. Finally, the kinetic parameters of VR pyrolysis were determined based on the results of Friedman analysis and distributed activation energy model (DAEM), and VR pyrolysis behavior was well expressed with the kinetic parameters obtained from DAEM analysis.</description><subject>Activation analysis</subject><subject>Activation energy</subject><subject>Analysis</subject><subject>Analytical Chemistry</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Complexity</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Parameters</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Pyrolysis</subject><subject>Residues</subject><subject>Systematic errors</subject><subject>Thermogravimetric analysis</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kU1LxDAQhosoqKs_wFvBk4euk2Sbj6OIH4uC4Mc5ZNtJzbJt1qRd3H9vtB7Wg-SQIfM8YZg3y84ITAmAuIwElGAFEF6UJZcF38uOSCllQRXl-6lmqeakhMPsOMYlACgF5CjTD67D3lW56cxqG13Mh-i6Ju_fMbS-CWbjWuzDLmB9yDvfueh_ILPK19vgx563-cZUw9DmAaOrBzzJDqxZRTz9vSfZ2-3N6_V98fh0N7--eiyqGeV9sTBMoERVIgNVzxhF4FQSsJYZsqClIYZRKViNVhgqoIJa1JTCYlGVRCjFJtn5-O86-I8BY6-Xfghp5KiJlCA5ABGJmo5UY1aoXWd9H0yVTo2tq3yH1qX3q5kArtLCSBIu_giJ6fGzb8wQo56_PP9lychWwccY0Op1cK0JW01Af4ekx5B0Ckl_h6R5cujoxMR2DYadsf-VvgC1FJUp</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Shin, Sangcheol</creator><creator>Im, Soo Ik</creator><creator>Nho, Nam Sun</creator><creator>Lee, Ki Bong</creator><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20161101</creationdate><title>Kinetic analysis using thermogravimetric analysis for nonisothermal pyrolysis of vacuum residue</title><author>Shin, Sangcheol ; Im, Soo Ik ; Nho, Nam Sun ; Lee, Ki Bong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-ba37e8e95e309d432e062810ff3a1b25a1a32873def7a270c0d7d220bbc517993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Activation analysis</topic><topic>Activation energy</topic><topic>Analysis</topic><topic>Analytical Chemistry</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Complexity</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Parameters</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Pyrolysis</topic><topic>Residues</topic><topic>Systematic errors</topic><topic>Thermogravimetric analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Sangcheol</creatorcontrib><creatorcontrib>Im, Soo Ik</creatorcontrib><creatorcontrib>Nho, Nam Sun</creatorcontrib><creatorcontrib>Lee, Ki Bong</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Sangcheol</au><au>Im, Soo Ik</au><au>Nho, Nam Sun</au><au>Lee, Ki Bong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kinetic analysis using thermogravimetric analysis for nonisothermal pyrolysis of vacuum residue</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>126</volume><issue>2</issue><spage>933</spage><epage>941</epage><pages>933-941</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>Pyrolysis is a relatively simple upgrading process that can produce light oil from unconventional oil and heavy residue. For effective utilization of pyrolysis processes, it is important to understand its kinetic parameters. In this study, the nonisothermal pyrolysis of vacuum residue (VR) was analyzed using a thermogravimetric analyzer and the activation energy of the VR pyrolysis reaction was estimated by several theoretical methods. It was found that isoconversional methods were more suitable than nonisoconversional methods for analyzing complex pyrolysis reaction of VR. The Friedman method, a differential isoconversional method, is thought to be the most appropriate among the various methods tested because it can describe the complexity of the pyrolysis reaction of VR and there is no need for information of exact reaction model and mathematical assumptions for temperature integral, which can raise systematic errors in the kinetic analysis. Finally, the kinetic parameters of VR pyrolysis were determined based on the results of Friedman analysis and distributed activation energy model (DAEM), and VR pyrolysis behavior was well expressed with the kinetic parameters obtained from DAEM analysis.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10973-016-5568-6</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2016-11, Vol.126 (2), p.933-941 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_1880860017 |
source | SpringerLink Journals - AutoHoldings |
subjects | Activation analysis Activation energy Analysis Analytical Chemistry Chemistry Chemistry and Materials Science Complexity Inorganic Chemistry Measurement Science and Instrumentation Parameters Physical Chemistry Polymer Sciences Pyrolysis Residues Systematic errors Thermogravimetric analysis |
title | Kinetic analysis using thermogravimetric analysis for nonisothermal pyrolysis of vacuum residue |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A15%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kinetic%20analysis%20using%20thermogravimetric%20analysis%20for%20nonisothermal%20pyrolysis%20of%20vacuum%20residue&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Shin,%20Sangcheol&rft.date=2016-11-01&rft.volume=126&rft.issue=2&rft.spage=933&rft.epage=941&rft.pages=933-941&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-016-5568-6&rft_dat=%3Cgale_proqu%3EA470693881%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880860017&rft_id=info:pmid/&rft_galeid=A470693881&rfr_iscdi=true |