Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study
Coordination chemistry of bonds between main group elements and electron donating ligands as in L →E (where E is electron acceptor centre like C 0 , Si 0 , N 1 , P 1 , As 1 , B 1 and L is an electron donating N-heterocyclic carbene) has been recently gaining attention. Many important drugs have nitr...
Gespeichert in:
Veröffentlicht in: | Journal of chemical sciences (Bangalore, India) India), 2016-10, Vol.128 (10), p.1607-1614 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1614 |
---|---|
container_issue | 10 |
container_start_page | 1607 |
container_title | Journal of chemical sciences (Bangalore, India) |
container_volume | 128 |
creator | KATHURIA, DEEPIKA ARFEEN, MINHAJUL BANKAR, APOORVA A BHARATAM, PRASAD V |
description | Coordination chemistry of bonds between main group elements and electron donating ligands as in L →E (where E is electron acceptor centre like C
0
, Si
0
, N
1
, P
1
, As
1
, B
1
and L is an electron donating N-heterocyclic carbene) has been recently gaining attention. Many important drugs have nitrogen atom as an electron acceptor center and can be represented by two general formulae: (L →
N
←L)
⊕
and L →N-R. Divalent N
1
compounds possess two lone pairs at central nitrogen and low nucleophilicity associated with them is found to be of importance. In this article, electronic structure analysis of drug molecules like picloxydine, chlorhexidine, and moroxydine was performed at B3LYP/6-311 ++G(d,p) level of theory. Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirms the presence of coordination bonds (L →
N
←L)
⊕
in the above mentioned drug molecules in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L →N-R systems.
Graphical Abstract
Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirm the presence of coordination bonds (L→N←L)
⊕
in the drug molecules like picloxydine, chlorhexidine and moroxydine in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L→N-R systems. |
doi_str_mv | 10.1007/s12039-016-1173-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880855044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880855044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2d300495f6a39649944760f4628fb80a902ba9c67a22f9693ad7f6623cb2aea33</originalsourceid><addsrcrecordid>eNp1kEtOwzAURS0EEqWwAGaWGKLA8yd2zKyEr1SBEDC2nMQuqRqn2MmgG2ABLJGVkBIGTBi9O7jnPukgdEzgjADI80goMJUAEQkhkiV0B01ADUESYLs_mSdMULGPDmJcArCMSzZBeW5CYb3FXx-fD6c4b9tQ1d50devxZeuriGuPr0K_iBd4hp9647u-wfmbberSrPBz11ebQ7TnzCrao987Ra831y_5XTJ_vL3PZ_OkZKnqEloxAK5SJwxTgivFuRTguKCZKzIwCmhhVCmkodQpoZippBOCsrKgxhrGpuhk3F2H9r23sdPLtg9-eKlJlkGWpsD50CJjqwxtjME6vQ51Y8JGE9BbV3p0pQdXeutK04GhIxOHrl_Y8Gf5X-gbAUNqIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880855044</pqid></control><display><type>article</type><title>Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study</title><source>SpringerNature Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>KATHURIA, DEEPIKA ; ARFEEN, MINHAJUL ; BANKAR, APOORVA A ; BHARATAM, PRASAD V</creator><creatorcontrib>KATHURIA, DEEPIKA ; ARFEEN, MINHAJUL ; BANKAR, APOORVA A ; BHARATAM, PRASAD V</creatorcontrib><description>Coordination chemistry of bonds between main group elements and electron donating ligands as in L →E (where E is electron acceptor centre like C
0
, Si
0
, N
1
, P
1
, As
1
, B
1
and L is an electron donating N-heterocyclic carbene) has been recently gaining attention. Many important drugs have nitrogen atom as an electron acceptor center and can be represented by two general formulae: (L →
N
←L)
⊕
and L →N-R. Divalent N
1
compounds possess two lone pairs at central nitrogen and low nucleophilicity associated with them is found to be of importance. In this article, electronic structure analysis of drug molecules like picloxydine, chlorhexidine, and moroxydine was performed at B3LYP/6-311 ++G(d,p) level of theory. Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirms the presence of coordination bonds (L →
N
←L)
⊕
in the above mentioned drug molecules in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L →N-R systems.
Graphical Abstract
Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirm the presence of coordination bonds (L→N←L)
⊕
in the drug molecules like picloxydine, chlorhexidine and moroxydine in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L→N-R systems.</description><identifier>ISSN: 0974-3626</identifier><identifier>EISSN: 0973-7103</identifier><identifier>DOI: 10.1007/s12039-016-1173-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Charge density ; Chemical bonds ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chlorhexidine ; Coordination compounds ; Drugs ; Electronic structure ; Electrons ; Molecular orbitals ; Molecular structure ; Nitrogen ; Quantum chemistry ; Structural analysis</subject><ispartof>Journal of chemical sciences (Bangalore, India), 2016-10, Vol.128 (10), p.1607-1614</ispartof><rights>Indian Academy of Sciences 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2d300495f6a39649944760f4628fb80a902ba9c67a22f9693ad7f6623cb2aea33</citedby><cites>FETCH-LOGICAL-c359t-2d300495f6a39649944760f4628fb80a902ba9c67a22f9693ad7f6623cb2aea33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12039-016-1173-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12039-016-1173-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>KATHURIA, DEEPIKA</creatorcontrib><creatorcontrib>ARFEEN, MINHAJUL</creatorcontrib><creatorcontrib>BANKAR, APOORVA A</creatorcontrib><creatorcontrib>BHARATAM, PRASAD V</creatorcontrib><title>Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study</title><title>Journal of chemical sciences (Bangalore, India)</title><addtitle>J Chem Sci</addtitle><description>Coordination chemistry of bonds between main group elements and electron donating ligands as in L →E (where E is electron acceptor centre like C
0
, Si
0
, N
1
, P
1
, As
1
, B
1
and L is an electron donating N-heterocyclic carbene) has been recently gaining attention. Many important drugs have nitrogen atom as an electron acceptor center and can be represented by two general formulae: (L →
N
←L)
⊕
and L →N-R. Divalent N
1
compounds possess two lone pairs at central nitrogen and low nucleophilicity associated with them is found to be of importance. In this article, electronic structure analysis of drug molecules like picloxydine, chlorhexidine, and moroxydine was performed at B3LYP/6-311 ++G(d,p) level of theory. Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirms the presence of coordination bonds (L →
N
←L)
⊕
in the above mentioned drug molecules in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L →N-R systems.
Graphical Abstract
Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirm the presence of coordination bonds (L→N←L)
⊕
in the drug molecules like picloxydine, chlorhexidine and moroxydine in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L→N-R systems.</description><subject>Charge density</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chlorhexidine</subject><subject>Coordination compounds</subject><subject>Drugs</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>Nitrogen</subject><subject>Quantum chemistry</subject><subject>Structural analysis</subject><issn>0974-3626</issn><issn>0973-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAURS0EEqWwAGaWGKLA8yd2zKyEr1SBEDC2nMQuqRqn2MmgG2ABLJGVkBIGTBi9O7jnPukgdEzgjADI80goMJUAEQkhkiV0B01ADUESYLs_mSdMULGPDmJcArCMSzZBeW5CYb3FXx-fD6c4b9tQ1d50devxZeuriGuPr0K_iBd4hp9647u-wfmbberSrPBz11ebQ7TnzCrao987Ra831y_5XTJ_vL3PZ_OkZKnqEloxAK5SJwxTgivFuRTguKCZKzIwCmhhVCmkodQpoZippBOCsrKgxhrGpuhk3F2H9r23sdPLtg9-eKlJlkGWpsD50CJjqwxtjME6vQ51Y8JGE9BbV3p0pQdXeutK04GhIxOHrl_Y8Gf5X-gbAUNqIg</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>KATHURIA, DEEPIKA</creator><creator>ARFEEN, MINHAJUL</creator><creator>BANKAR, APOORVA A</creator><creator>BHARATAM, PRASAD V</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study</title><author>KATHURIA, DEEPIKA ; ARFEEN, MINHAJUL ; BANKAR, APOORVA A ; BHARATAM, PRASAD V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2d300495f6a39649944760f4628fb80a902ba9c67a22f9693ad7f6623cb2aea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Charge density</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chlorhexidine</topic><topic>Coordination compounds</topic><topic>Drugs</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>Nitrogen</topic><topic>Quantum chemistry</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KATHURIA, DEEPIKA</creatorcontrib><creatorcontrib>ARFEEN, MINHAJUL</creatorcontrib><creatorcontrib>BANKAR, APOORVA A</creatorcontrib><creatorcontrib>BHARATAM, PRASAD V</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of chemical sciences (Bangalore, India)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KATHURIA, DEEPIKA</au><au>ARFEEN, MINHAJUL</au><au>BANKAR, APOORVA A</au><au>BHARATAM, PRASAD V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study</atitle><jtitle>Journal of chemical sciences (Bangalore, India)</jtitle><stitle>J Chem Sci</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>128</volume><issue>10</issue><spage>1607</spage><epage>1614</epage><pages>1607-1614</pages><issn>0974-3626</issn><eissn>0973-7103</eissn><abstract>Coordination chemistry of bonds between main group elements and electron donating ligands as in L →E (where E is electron acceptor centre like C
0
, Si
0
, N
1
, P
1
, As
1
, B
1
and L is an electron donating N-heterocyclic carbene) has been recently gaining attention. Many important drugs have nitrogen atom as an electron acceptor center and can be represented by two general formulae: (L →
N
←L)
⊕
and L →N-R. Divalent N
1
compounds possess two lone pairs at central nitrogen and low nucleophilicity associated with them is found to be of importance. In this article, electronic structure analysis of drug molecules like picloxydine, chlorhexidine, and moroxydine was performed at B3LYP/6-311 ++G(d,p) level of theory. Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirms the presence of coordination bonds (L →
N
←L)
⊕
in the above mentioned drug molecules in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L →N-R systems.
Graphical Abstract
Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirm the presence of coordination bonds (L→N←L)
⊕
in the drug molecules like picloxydine, chlorhexidine and moroxydine in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L→N-R systems.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12039-016-1173-2</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0974-3626 |
ispartof | Journal of chemical sciences (Bangalore, India), 2016-10, Vol.128 (10), p.1607-1614 |
issn | 0974-3626 0973-7103 |
language | eng |
recordid | cdi_proquest_journals_1880855044 |
source | SpringerNature Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Charge density Chemical bonds Chemistry Chemistry and Materials Science Chemistry/Food Science Chlorhexidine Coordination compounds Drugs Electronic structure Electrons Molecular orbitals Molecular structure Nitrogen Quantum chemistry Structural analysis |
title | Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbene%20%E2%86%92N+%20Coordination%20Bonds%20in%20Drugs:%20A%20Quantum%20Chemical%20Study&rft.jtitle=Journal%20of%20chemical%20sciences%20(Bangalore,%20India)&rft.au=KATHURIA,%20DEEPIKA&rft.date=2016-10-01&rft.volume=128&rft.issue=10&rft.spage=1607&rft.epage=1614&rft.pages=1607-1614&rft.issn=0974-3626&rft.eissn=0973-7103&rft_id=info:doi/10.1007/s12039-016-1173-2&rft_dat=%3Cproquest_cross%3E1880855044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880855044&rft_id=info:pmid/&rfr_iscdi=true |