Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study

Coordination chemistry of bonds between main group elements and electron donating ligands as in L →E (where E is electron acceptor centre like C 0 , Si 0 , N 1 , P 1 , As 1 , B 1 and L is an electron donating N-heterocyclic carbene) has been recently gaining attention. Many important drugs have nitr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical sciences (Bangalore, India) India), 2016-10, Vol.128 (10), p.1607-1614
Hauptverfasser: KATHURIA, DEEPIKA, ARFEEN, MINHAJUL, BANKAR, APOORVA A, BHARATAM, PRASAD V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1614
container_issue 10
container_start_page 1607
container_title Journal of chemical sciences (Bangalore, India)
container_volume 128
creator KATHURIA, DEEPIKA
ARFEEN, MINHAJUL
BANKAR, APOORVA A
BHARATAM, PRASAD V
description Coordination chemistry of bonds between main group elements and electron donating ligands as in L →E (where E is electron acceptor centre like C 0 , Si 0 , N 1 , P 1 , As 1 , B 1 and L is an electron donating N-heterocyclic carbene) has been recently gaining attention. Many important drugs have nitrogen atom as an electron acceptor center and can be represented by two general formulae: (L → N ←L) ⊕ and L →N-R. Divalent N 1 compounds possess two lone pairs at central nitrogen and low nucleophilicity associated with them is found to be of importance. In this article, electronic structure analysis of drug molecules like picloxydine, chlorhexidine, and moroxydine was performed at B3LYP/6-311 ++G(d,p) level of theory. Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirms the presence of coordination bonds (L → N ←L) ⊕ in the above mentioned drug molecules in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L →N-R systems. Graphical Abstract Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirm the presence of coordination bonds (L→N←L) ⊕ in the drug molecules like picloxydine, chlorhexidine and moroxydine in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L→N-R systems.
doi_str_mv 10.1007/s12039-016-1173-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880855044</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880855044</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-2d300495f6a39649944760f4628fb80a902ba9c67a22f9693ad7f6623cb2aea33</originalsourceid><addsrcrecordid>eNp1kEtOwzAURS0EEqWwAGaWGKLA8yd2zKyEr1SBEDC2nMQuqRqn2MmgG2ABLJGVkBIGTBi9O7jnPukgdEzgjADI80goMJUAEQkhkiV0B01ADUESYLs_mSdMULGPDmJcArCMSzZBeW5CYb3FXx-fD6c4b9tQ1d50devxZeuriGuPr0K_iBd4hp9647u-wfmbberSrPBz11ebQ7TnzCrao987Ra831y_5XTJ_vL3PZ_OkZKnqEloxAK5SJwxTgivFuRTguKCZKzIwCmhhVCmkodQpoZippBOCsrKgxhrGpuhk3F2H9r23sdPLtg9-eKlJlkGWpsD50CJjqwxtjME6vQ51Y8JGE9BbV3p0pQdXeutK04GhIxOHrl_Y8Gf5X-gbAUNqIg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880855044</pqid></control><display><type>article</type><title>Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study</title><source>SpringerNature Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>KATHURIA, DEEPIKA ; ARFEEN, MINHAJUL ; BANKAR, APOORVA A ; BHARATAM, PRASAD V</creator><creatorcontrib>KATHURIA, DEEPIKA ; ARFEEN, MINHAJUL ; BANKAR, APOORVA A ; BHARATAM, PRASAD V</creatorcontrib><description>Coordination chemistry of bonds between main group elements and electron donating ligands as in L →E (where E is electron acceptor centre like C 0 , Si 0 , N 1 , P 1 , As 1 , B 1 and L is an electron donating N-heterocyclic carbene) has been recently gaining attention. Many important drugs have nitrogen atom as an electron acceptor center and can be represented by two general formulae: (L → N ←L) ⊕ and L →N-R. Divalent N 1 compounds possess two lone pairs at central nitrogen and low nucleophilicity associated with them is found to be of importance. In this article, electronic structure analysis of drug molecules like picloxydine, chlorhexidine, and moroxydine was performed at B3LYP/6-311 ++G(d,p) level of theory. Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirms the presence of coordination bonds (L → N ←L) ⊕ in the above mentioned drug molecules in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L →N-R systems. Graphical Abstract Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirm the presence of coordination bonds (L→N←L) ⊕ in the drug molecules like picloxydine, chlorhexidine and moroxydine in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L→N-R systems.</description><identifier>ISSN: 0974-3626</identifier><identifier>EISSN: 0973-7103</identifier><identifier>DOI: 10.1007/s12039-016-1173-2</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Charge density ; Chemical bonds ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Chlorhexidine ; Coordination compounds ; Drugs ; Electronic structure ; Electrons ; Molecular orbitals ; Molecular structure ; Nitrogen ; Quantum chemistry ; Structural analysis</subject><ispartof>Journal of chemical sciences (Bangalore, India), 2016-10, Vol.128 (10), p.1607-1614</ispartof><rights>Indian Academy of Sciences 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-2d300495f6a39649944760f4628fb80a902ba9c67a22f9693ad7f6623cb2aea33</citedby><cites>FETCH-LOGICAL-c359t-2d300495f6a39649944760f4628fb80a902ba9c67a22f9693ad7f6623cb2aea33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12039-016-1173-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12039-016-1173-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>KATHURIA, DEEPIKA</creatorcontrib><creatorcontrib>ARFEEN, MINHAJUL</creatorcontrib><creatorcontrib>BANKAR, APOORVA A</creatorcontrib><creatorcontrib>BHARATAM, PRASAD V</creatorcontrib><title>Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study</title><title>Journal of chemical sciences (Bangalore, India)</title><addtitle>J Chem Sci</addtitle><description>Coordination chemistry of bonds between main group elements and electron donating ligands as in L →E (where E is electron acceptor centre like C 0 , Si 0 , N 1 , P 1 , As 1 , B 1 and L is an electron donating N-heterocyclic carbene) has been recently gaining attention. Many important drugs have nitrogen atom as an electron acceptor center and can be represented by two general formulae: (L → N ←L) ⊕ and L →N-R. Divalent N 1 compounds possess two lone pairs at central nitrogen and low nucleophilicity associated with them is found to be of importance. In this article, electronic structure analysis of drug molecules like picloxydine, chlorhexidine, and moroxydine was performed at B3LYP/6-311 ++G(d,p) level of theory. Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirms the presence of coordination bonds (L → N ←L) ⊕ in the above mentioned drug molecules in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L →N-R systems. Graphical Abstract Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirm the presence of coordination bonds (L→N←L) ⊕ in the drug molecules like picloxydine, chlorhexidine and moroxydine in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L→N-R systems.</description><subject>Charge density</subject><subject>Chemical bonds</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Chlorhexidine</subject><subject>Coordination compounds</subject><subject>Drugs</subject><subject>Electronic structure</subject><subject>Electrons</subject><subject>Molecular orbitals</subject><subject>Molecular structure</subject><subject>Nitrogen</subject><subject>Quantum chemistry</subject><subject>Structural analysis</subject><issn>0974-3626</issn><issn>0973-7103</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAURS0EEqWwAGaWGKLA8yd2zKyEr1SBEDC2nMQuqRqn2MmgG2ABLJGVkBIGTBi9O7jnPukgdEzgjADI80goMJUAEQkhkiV0B01ADUESYLs_mSdMULGPDmJcArCMSzZBeW5CYb3FXx-fD6c4b9tQ1d50devxZeuriGuPr0K_iBd4hp9647u-wfmbberSrPBz11ebQ7TnzCrao987Ra831y_5XTJ_vL3PZ_OkZKnqEloxAK5SJwxTgivFuRTguKCZKzIwCmhhVCmkodQpoZippBOCsrKgxhrGpuhk3F2H9r23sdPLtg9-eKlJlkGWpsD50CJjqwxtjME6vQ51Y8JGE9BbV3p0pQdXeutK04GhIxOHrl_Y8Gf5X-gbAUNqIg</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>KATHURIA, DEEPIKA</creator><creator>ARFEEN, MINHAJUL</creator><creator>BANKAR, APOORVA A</creator><creator>BHARATAM, PRASAD V</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study</title><author>KATHURIA, DEEPIKA ; ARFEEN, MINHAJUL ; BANKAR, APOORVA A ; BHARATAM, PRASAD V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-2d300495f6a39649944760f4628fb80a902ba9c67a22f9693ad7f6623cb2aea33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Charge density</topic><topic>Chemical bonds</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Chlorhexidine</topic><topic>Coordination compounds</topic><topic>Drugs</topic><topic>Electronic structure</topic><topic>Electrons</topic><topic>Molecular orbitals</topic><topic>Molecular structure</topic><topic>Nitrogen</topic><topic>Quantum chemistry</topic><topic>Structural analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>KATHURIA, DEEPIKA</creatorcontrib><creatorcontrib>ARFEEN, MINHAJUL</creatorcontrib><creatorcontrib>BANKAR, APOORVA A</creatorcontrib><creatorcontrib>BHARATAM, PRASAD V</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of chemical sciences (Bangalore, India)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>KATHURIA, DEEPIKA</au><au>ARFEEN, MINHAJUL</au><au>BANKAR, APOORVA A</au><au>BHARATAM, PRASAD V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study</atitle><jtitle>Journal of chemical sciences (Bangalore, India)</jtitle><stitle>J Chem Sci</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>128</volume><issue>10</issue><spage>1607</spage><epage>1614</epage><pages>1607-1614</pages><issn>0974-3626</issn><eissn>0973-7103</eissn><abstract>Coordination chemistry of bonds between main group elements and electron donating ligands as in L →E (where E is electron acceptor centre like C 0 , Si 0 , N 1 , P 1 , As 1 , B 1 and L is an electron donating N-heterocyclic carbene) has been recently gaining attention. Many important drugs have nitrogen atom as an electron acceptor center and can be represented by two general formulae: (L → N ←L) ⊕ and L →N-R. Divalent N 1 compounds possess two lone pairs at central nitrogen and low nucleophilicity associated with them is found to be of importance. In this article, electronic structure analysis of drug molecules like picloxydine, chlorhexidine, and moroxydine was performed at B3LYP/6-311 ++G(d,p) level of theory. Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirms the presence of coordination bonds (L → N ←L) ⊕ in the above mentioned drug molecules in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L →N-R systems. Graphical Abstract Evaluation of electron localization function (ELF), molecular orbitals, charge density, nucleophilicity, proton affinity and complexation energy estimation confirm the presence of coordination bonds (L→N←L) ⊕ in the drug molecules like picloxydine, chlorhexidine and moroxydine in their cationic state. Further, electronic structure analysis of drugs like clonidine, apraclonidine, brimonidine and xylazine indicated the presence of electronic structure similar to L→N-R systems.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12039-016-1173-2</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0974-3626
ispartof Journal of chemical sciences (Bangalore, India), 2016-10, Vol.128 (10), p.1607-1614
issn 0974-3626
0973-7103
language eng
recordid cdi_proquest_journals_1880855044
source SpringerNature Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Charge density
Chemical bonds
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Chlorhexidine
Coordination compounds
Drugs
Electronic structure
Electrons
Molecular orbitals
Molecular structure
Nitrogen
Quantum chemistry
Structural analysis
title Carbene →N+ Coordination Bonds in Drugs: A Quantum Chemical Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A08%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carbene%20%E2%86%92N+%20Coordination%20Bonds%20in%20Drugs:%20A%20Quantum%20Chemical%20Study&rft.jtitle=Journal%20of%20chemical%20sciences%20(Bangalore,%20India)&rft.au=KATHURIA,%20DEEPIKA&rft.date=2016-10-01&rft.volume=128&rft.issue=10&rft.spage=1607&rft.epage=1614&rft.pages=1607-1614&rft.issn=0974-3626&rft.eissn=0973-7103&rft_id=info:doi/10.1007/s12039-016-1173-2&rft_dat=%3Cproquest_cross%3E1880855044%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880855044&rft_id=info:pmid/&rfr_iscdi=true