Solving the perspective-three-point problem using comprehensive Gröbner systems

A complete solution classification of the perspective-three-point (P3P) problem is given by using the Gröbner basis method. The structure of the solution space of the polynomial system deduced by the P3P problem can be obtained by computing a comprehensive Gröbner system. Combining with properties o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of systems science and complexity 2016-10, Vol.29 (5), p.1446-1471
Hauptverfasser: Zhou, Jie, Wang, Dingkang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1471
container_issue 5
container_start_page 1446
container_title Journal of systems science and complexity
container_volume 29
creator Zhou, Jie
Wang, Dingkang
description A complete solution classification of the perspective-three-point (P3P) problem is given by using the Gröbner basis method. The structure of the solution space of the polynomial system deduced by the P3P problem can be obtained by computing a comprehensive Gröbner system. Combining with properties of the generalized discriminant sequences, the authors give the explicit conditions to determine the number of distinct real positive solutions of the P3P problem. Several examples are provided to illustrate the effectiveness of the proposed conditions.
doi_str_mv 10.1007/s11424-015-4310-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880854067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880854067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-82875a029f992cfa479f428ff933c10e13929dca39ac277cee5d495cfa1c74323</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqVwAHaRWBtmbCeOl6iCglQJJGBtpe6kTdU8sNNKuRgX4GK4Cgs2rGYW3z-Pj7FrhFsE0HcBUQnFAVOuJAIfTtgE09RwDZk-jT2A4RkKdc4uQtgCyMxAPmGvb-3uUDXrpN9Q0pEPHbm-OhDvN56Id23V9Enn2-WO6mQfjqRr687ThpoQuWTuv7-WDfkkDKGnOlyys7LYBbr6rVP28fjwPnvii5f58-x-wZ3ErOe5yHVagDClMcKVhdKmVCIvSyOlQyCURpiVK6QpnNDaEaUrZdJIotNKCjllN-PceNznnkJvt-3eN3GlxTyHPFXx8UjhSDnfhuCptJ2v6sIPFsEexdlRnI3i7FGcHWJGjJkQ2WZN_s_kf0M_HBpyuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880854067</pqid></control><display><type>article</type><title>Solving the perspective-three-point problem using comprehensive Gröbner systems</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Zhou, Jie ; Wang, Dingkang</creator><creatorcontrib>Zhou, Jie ; Wang, Dingkang</creatorcontrib><description>A complete solution classification of the perspective-three-point (P3P) problem is given by using the Gröbner basis method. The structure of the solution space of the polynomial system deduced by the P3P problem can be obtained by computing a comprehensive Gröbner system. Combining with properties of the generalized discriminant sequences, the authors give the explicit conditions to determine the number of distinct real positive solutions of the P3P problem. Several examples are provided to illustrate the effectiveness of the proposed conditions.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-015-4310-y</identifier><language>eng</language><publisher>Beijing: Academy of Mathematics and Systems Science, Chinese Academy of Sciences</publisher><subject>Complex Systems ; Control ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Sequences ; Solution space ; Statistics ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2016-10, Vol.29 (5), p.1446-1471</ispartof><rights>Institute of Systems Science, Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-82875a029f992cfa479f428ff933c10e13929dca39ac277cee5d495cfa1c74323</citedby><cites>FETCH-LOGICAL-c316t-82875a029f992cfa479f428ff933c10e13929dca39ac277cee5d495cfa1c74323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-015-4310-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-015-4310-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Wang, Dingkang</creatorcontrib><title>Solving the perspective-three-point problem using comprehensive Gröbner systems</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>A complete solution classification of the perspective-three-point (P3P) problem is given by using the Gröbner basis method. The structure of the solution space of the polynomial system deduced by the P3P problem can be obtained by computing a comprehensive Gröbner system. Combining with properties of the generalized discriminant sequences, the authors give the explicit conditions to determine the number of distinct real positive solutions of the P3P problem. Several examples are provided to illustrate the effectiveness of the proposed conditions.</description><subject>Complex Systems</subject><subject>Control</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Sequences</subject><subject>Solution space</subject><subject>Statistics</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqVwAHaRWBtmbCeOl6iCglQJJGBtpe6kTdU8sNNKuRgX4GK4Cgs2rGYW3z-Pj7FrhFsE0HcBUQnFAVOuJAIfTtgE09RwDZk-jT2A4RkKdc4uQtgCyMxAPmGvb-3uUDXrpN9Q0pEPHbm-OhDvN56Id23V9Enn2-WO6mQfjqRr687ThpoQuWTuv7-WDfkkDKGnOlyys7LYBbr6rVP28fjwPnvii5f58-x-wZ3ErOe5yHVagDClMcKVhdKmVCIvSyOlQyCURpiVK6QpnNDaEaUrZdJIotNKCjllN-PceNznnkJvt-3eN3GlxTyHPFXx8UjhSDnfhuCptJ2v6sIPFsEexdlRnI3i7FGcHWJGjJkQ2WZN_s_kf0M_HBpyuw</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Zhou, Jie</creator><creator>Wang, Dingkang</creator><general>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Solving the perspective-three-point problem using comprehensive Gröbner systems</title><author>Zhou, Jie ; Wang, Dingkang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-82875a029f992cfa479f428ff933c10e13929dca39ac277cee5d495cfa1c74323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complex Systems</topic><topic>Control</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Sequences</topic><topic>Solution space</topic><topic>Statistics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Wang, Dingkang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jie</au><au>Wang, Dingkang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the perspective-three-point problem using comprehensive Gröbner systems</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>29</volume><issue>5</issue><spage>1446</spage><epage>1471</epage><pages>1446-1471</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>A complete solution classification of the perspective-three-point (P3P) problem is given by using the Gröbner basis method. The structure of the solution space of the polynomial system deduced by the P3P problem can be obtained by computing a comprehensive Gröbner system. Combining with properties of the generalized discriminant sequences, the authors give the explicit conditions to determine the number of distinct real positive solutions of the P3P problem. Several examples are provided to illustrate the effectiveness of the proposed conditions.</abstract><cop>Beijing</cop><pub>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</pub><doi>10.1007/s11424-015-4310-y</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1009-6124
ispartof Journal of systems science and complexity, 2016-10, Vol.29 (5), p.1446-1471
issn 1009-6124
1559-7067
language eng
recordid cdi_proquest_journals_1880854067
source SpringerLink Journals; Alma/SFX Local Collection
subjects Complex Systems
Control
Mathematics
Mathematics and Statistics
Mathematics of Computing
Operations Research/Decision Theory
Sequences
Solution space
Statistics
Systems Theory
title Solving the perspective-three-point problem using comprehensive Gröbner systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20perspective-three-point%20problem%20using%20comprehensive%20Gr%C3%B6bner%20systems&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Zhou,%20Jie&rft.date=2016-10-01&rft.volume=29&rft.issue=5&rft.spage=1446&rft.epage=1471&rft.pages=1446-1471&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-015-4310-y&rft_dat=%3Cproquest_cross%3E1880854067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880854067&rft_id=info:pmid/&rfr_iscdi=true