Solving the perspective-three-point problem using comprehensive Gröbner systems
A complete solution classification of the perspective-three-point (P3P) problem is given by using the Gröbner basis method. The structure of the solution space of the polynomial system deduced by the P3P problem can be obtained by computing a comprehensive Gröbner system. Combining with properties o...
Gespeichert in:
Veröffentlicht in: | Journal of systems science and complexity 2016-10, Vol.29 (5), p.1446-1471 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1471 |
---|---|
container_issue | 5 |
container_start_page | 1446 |
container_title | Journal of systems science and complexity |
container_volume | 29 |
creator | Zhou, Jie Wang, Dingkang |
description | A complete solution classification of the perspective-three-point (P3P) problem is given by using the Gröbner basis method. The structure of the solution space of the polynomial system deduced by the P3P problem can be obtained by computing a comprehensive Gröbner system. Combining with properties of the generalized discriminant sequences, the authors give the explicit conditions to determine the number of distinct real positive solutions of the P3P problem. Several examples are provided to illustrate the effectiveness of the proposed conditions. |
doi_str_mv | 10.1007/s11424-015-4310-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880854067</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880854067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-82875a029f992cfa479f428ff933c10e13929dca39ac277cee5d495cfa1c74323</originalsourceid><addsrcrecordid>eNp1kEtOwzAQhi0EEqVwAHaRWBtmbCeOl6iCglQJJGBtpe6kTdU8sNNKuRgX4GK4Cgs2rGYW3z-Pj7FrhFsE0HcBUQnFAVOuJAIfTtgE09RwDZk-jT2A4RkKdc4uQtgCyMxAPmGvb-3uUDXrpN9Q0pEPHbm-OhDvN56Id23V9Enn2-WO6mQfjqRr687ThpoQuWTuv7-WDfkkDKGnOlyys7LYBbr6rVP28fjwPnvii5f58-x-wZ3ErOe5yHVagDClMcKVhdKmVCIvSyOlQyCURpiVK6QpnNDaEaUrZdJIotNKCjllN-PceNznnkJvt-3eN3GlxTyHPFXx8UjhSDnfhuCptJ2v6sIPFsEexdlRnI3i7FGcHWJGjJkQ2WZN_s_kf0M_HBpyuw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880854067</pqid></control><display><type>article</type><title>Solving the perspective-three-point problem using comprehensive Gröbner systems</title><source>SpringerLink Journals</source><source>Alma/SFX Local Collection</source><creator>Zhou, Jie ; Wang, Dingkang</creator><creatorcontrib>Zhou, Jie ; Wang, Dingkang</creatorcontrib><description>A complete solution classification of the perspective-three-point (P3P) problem is given by using the Gröbner basis method. The structure of the solution space of the polynomial system deduced by the P3P problem can be obtained by computing a comprehensive Gröbner system. Combining with properties of the generalized discriminant sequences, the authors give the explicit conditions to determine the number of distinct real positive solutions of the P3P problem. Several examples are provided to illustrate the effectiveness of the proposed conditions.</description><identifier>ISSN: 1009-6124</identifier><identifier>EISSN: 1559-7067</identifier><identifier>DOI: 10.1007/s11424-015-4310-y</identifier><language>eng</language><publisher>Beijing: Academy of Mathematics and Systems Science, Chinese Academy of Sciences</publisher><subject>Complex Systems ; Control ; Mathematics ; Mathematics and Statistics ; Mathematics of Computing ; Operations Research/Decision Theory ; Sequences ; Solution space ; Statistics ; Systems Theory</subject><ispartof>Journal of systems science and complexity, 2016-10, Vol.29 (5), p.1446-1471</ispartof><rights>Institute of Systems Science, Academy of Mathematics and Systems Science, CAS and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-82875a029f992cfa479f428ff933c10e13929dca39ac277cee5d495cfa1c74323</citedby><cites>FETCH-LOGICAL-c316t-82875a029f992cfa479f428ff933c10e13929dca39ac277cee5d495cfa1c74323</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11424-015-4310-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11424-015-4310-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Wang, Dingkang</creatorcontrib><title>Solving the perspective-three-point problem using comprehensive Gröbner systems</title><title>Journal of systems science and complexity</title><addtitle>J Syst Sci Complex</addtitle><description>A complete solution classification of the perspective-three-point (P3P) problem is given by using the Gröbner basis method. The structure of the solution space of the polynomial system deduced by the P3P problem can be obtained by computing a comprehensive Gröbner system. Combining with properties of the generalized discriminant sequences, the authors give the explicit conditions to determine the number of distinct real positive solutions of the P3P problem. Several examples are provided to illustrate the effectiveness of the proposed conditions.</description><subject>Complex Systems</subject><subject>Control</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mathematics of Computing</subject><subject>Operations Research/Decision Theory</subject><subject>Sequences</subject><subject>Solution space</subject><subject>Statistics</subject><subject>Systems Theory</subject><issn>1009-6124</issn><issn>1559-7067</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtOwzAQhi0EEqVwAHaRWBtmbCeOl6iCglQJJGBtpe6kTdU8sNNKuRgX4GK4Cgs2rGYW3z-Pj7FrhFsE0HcBUQnFAVOuJAIfTtgE09RwDZk-jT2A4RkKdc4uQtgCyMxAPmGvb-3uUDXrpN9Q0pEPHbm-OhDvN56Id23V9Enn2-WO6mQfjqRr687ThpoQuWTuv7-WDfkkDKGnOlyys7LYBbr6rVP28fjwPnvii5f58-x-wZ3ErOe5yHVagDClMcKVhdKmVCIvSyOlQyCURpiVK6QpnNDaEaUrZdJIotNKCjllN-PceNznnkJvt-3eN3GlxTyHPFXx8UjhSDnfhuCptJ2v6sIPFsEexdlRnI3i7FGcHWJGjJkQ2WZN_s_kf0M_HBpyuw</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Zhou, Jie</creator><creator>Wang, Dingkang</creator><general>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Solving the perspective-three-point problem using comprehensive Gröbner systems</title><author>Zhou, Jie ; Wang, Dingkang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-82875a029f992cfa479f428ff933c10e13929dca39ac277cee5d495cfa1c74323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complex Systems</topic><topic>Control</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mathematics of Computing</topic><topic>Operations Research/Decision Theory</topic><topic>Sequences</topic><topic>Solution space</topic><topic>Statistics</topic><topic>Systems Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Jie</creatorcontrib><creatorcontrib>Wang, Dingkang</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of systems science and complexity</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Jie</au><au>Wang, Dingkang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solving the perspective-three-point problem using comprehensive Gröbner systems</atitle><jtitle>Journal of systems science and complexity</jtitle><stitle>J Syst Sci Complex</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>29</volume><issue>5</issue><spage>1446</spage><epage>1471</epage><pages>1446-1471</pages><issn>1009-6124</issn><eissn>1559-7067</eissn><abstract>A complete solution classification of the perspective-three-point (P3P) problem is given by using the Gröbner basis method. The structure of the solution space of the polynomial system deduced by the P3P problem can be obtained by computing a comprehensive Gröbner system. Combining with properties of the generalized discriminant sequences, the authors give the explicit conditions to determine the number of distinct real positive solutions of the P3P problem. Several examples are provided to illustrate the effectiveness of the proposed conditions.</abstract><cop>Beijing</cop><pub>Academy of Mathematics and Systems Science, Chinese Academy of Sciences</pub><doi>10.1007/s11424-015-4310-y</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1009-6124 |
ispartof | Journal of systems science and complexity, 2016-10, Vol.29 (5), p.1446-1471 |
issn | 1009-6124 1559-7067 |
language | eng |
recordid | cdi_proquest_journals_1880854067 |
source | SpringerLink Journals; Alma/SFX Local Collection |
subjects | Complex Systems Control Mathematics Mathematics and Statistics Mathematics of Computing Operations Research/Decision Theory Sequences Solution space Statistics Systems Theory |
title | Solving the perspective-three-point problem using comprehensive Gröbner systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A13%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solving%20the%20perspective-three-point%20problem%20using%20comprehensive%20Gr%C3%B6bner%20systems&rft.jtitle=Journal%20of%20systems%20science%20and%20complexity&rft.au=Zhou,%20Jie&rft.date=2016-10-01&rft.volume=29&rft.issue=5&rft.spage=1446&rft.epage=1471&rft.pages=1446-1471&rft.issn=1009-6124&rft.eissn=1559-7067&rft_id=info:doi/10.1007/s11424-015-4310-y&rft_dat=%3Cproquest_cross%3E1880854067%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880854067&rft_id=info:pmid/&rfr_iscdi=true |