Continuity of topological entropy for perturbation of time-one maps of hyperbolic flows

We consider a C 1 neighborhood of the time-one map of a hyperbolic flow and prove that the topological entropy varies continuously for diffeomorphisms in this neighborhood. This shows that the topological entropy varies continuously for all known examples of partially hyperbolic diffeomorphisms with...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Israel journal of mathematics 2016-09, Vol.215 (2), p.857-875
Hauptverfasser: Saghin, Radu, Yang, Jiagang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider a C 1 neighborhood of the time-one map of a hyperbolic flow and prove that the topological entropy varies continuously for diffeomorphisms in this neighborhood. This shows that the topological entropy varies continuously for all known examples of partially hyperbolic diffeomorphisms with one-dimensional center bundle.
ISSN:0021-2172
1565-8511
DOI:10.1007/s11856-016-1396-4