Generalized Derivations and Commuting Additive Maps on Multilinear Polynomials in Prime Rings

Let R be a prime ring with characteristic different from 2 , let U be its right Utumi quotient ring, let C be its extended centroid, let F and G be additive maps on R , let f ( x 1 , . . . ,x n ) be a multilinear polynomial over C , and let I be a nonzero right ideal of R . We obtain information abo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2016-07, Vol.68 (2), p.203-223
Hauptverfasser: De Filippis, V., Dhara, B., Scudo, G.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 2
container_start_page 203
container_title Ukrainian mathematical journal
container_volume 68
creator De Filippis, V.
Dhara, B.
Scudo, G.
description Let R be a prime ring with characteristic different from 2 , let U be its right Utumi quotient ring, let C be its extended centroid, let F and G be additive maps on R , let f ( x 1 , . . . ,x n ) be a multilinear polynomial over C , and let I be a nonzero right ideal of R . We obtain information about the structure of R and describe the form of F and G in the following cases: [( F 2 + G )( f ( r 1 , . . . , r n )) , f ( r 1 , . . . , r n )] = 0 for all r 1 , . . . , r n ∈ R , where F and G are generalized derivations of R ; [( F 2 + G )( f ( r 1 , . . . , r n )) , f ( r 1 , . . . , r n )] = 0 for all r 1 , . . . , r n ∈ I , where F and G are derivations of R .
doi_str_mv 10.1007/s11253-016-1219-0
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880847312</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499343140</galeid><sourcerecordid>A499343140</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-b537f2d10de7ed4f89bb3611f1cc399494f0c8fc87dfe5585a8d23309e0a6daa3</originalsourceid><addsrcrecordid>eNp1kE9rGzEQxUVJIE7aD5CboOd1NKtdSzoap3UDMTElORYhr0ZGYVdypHUg_fSR2RxyCXMYeLzf_HmEXAObA2PiJgPULa8YLCqoQVXsG5lBK3iluFickRljDVStUu0Fucz5mbFCSTEj_9YYMJne_0dLbzH5VzP6GDI1wdJVHIbj6MOeLq31o39FujGHTGOgm2M_-t4HNIluY_8W4uBNn6kPdJv8gPRvwfJ3cu6Kij8--hV5-v3rcfWnun9Y362W91XHhRirXcuFqy0wiwJt46Ta7fgCwEHXcaUa1TjWSddJYR22rWyNtDXnTCEzC2sMvyI_p7mHFF-OmEf9HI8plJUapGSyERzq4ppPrr3pUfvg4phMV8ri4LsY0PmiLxuleMOhYQWACehSzDmh04fym0lvGpg-xa6n2HWJXZ9i1yemnphcvGGP6dMpX0Lv7iuFfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880847312</pqid></control><display><type>article</type><title>Generalized Derivations and Commuting Additive Maps on Multilinear Polynomials in Prime Rings</title><source>SpringerLink Journals</source><creator>De Filippis, V. ; Dhara, B. ; Scudo, G.</creator><creatorcontrib>De Filippis, V. ; Dhara, B. ; Scudo, G.</creatorcontrib><description>Let R be a prime ring with characteristic different from 2 , let U be its right Utumi quotient ring, let C be its extended centroid, let F and G be additive maps on R , let f ( x 1 , . . . ,x n ) be a multilinear polynomial over C , and let I be a nonzero right ideal of R . We obtain information about the structure of R and describe the form of F and G in the following cases: [( F 2 + G )( f ( r 1 , . . . , r n )) , f ( r 1 , . . . , r n )] = 0 for all r 1 , . . . , r n ∈ R , where F and G are generalized derivations of R ; [( F 2 + G )( f ( r 1 , . . . , r n )) , f ( r 1 , . . . , r n )] = 0 for all r 1 , . . . , r n ∈ I , where F and G are derivations of R .</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-016-1219-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Geometry ; Mathematics ; Mathematics and Statistics ; Polynomials ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2016-07, Vol.68 (2), p.203-223</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c377t-b537f2d10de7ed4f89bb3611f1cc399494f0c8fc87dfe5585a8d23309e0a6daa3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-016-1219-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-016-1219-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>De Filippis, V.</creatorcontrib><creatorcontrib>Dhara, B.</creatorcontrib><creatorcontrib>Scudo, G.</creatorcontrib><title>Generalized Derivations and Commuting Additive Maps on Multilinear Polynomials in Prime Rings</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>Let R be a prime ring with characteristic different from 2 , let U be its right Utumi quotient ring, let C be its extended centroid, let F and G be additive maps on R , let f ( x 1 , . . . ,x n ) be a multilinear polynomial over C , and let I be a nonzero right ideal of R . We obtain information about the structure of R and describe the form of F and G in the following cases: [( F 2 + G )( f ( r 1 , . . . , r n )) , f ( r 1 , . . . , r n )] = 0 for all r 1 , . . . , r n ∈ R , where F and G are generalized derivations of R ; [( F 2 + G )( f ( r 1 , . . . , r n )) , f ( r 1 , . . . , r n )] = 0 for all r 1 , . . . , r n ∈ I , where F and G are derivations of R .</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE9rGzEQxUVJIE7aD5CboOd1NKtdSzoap3UDMTElORYhr0ZGYVdypHUg_fSR2RxyCXMYeLzf_HmEXAObA2PiJgPULa8YLCqoQVXsG5lBK3iluFickRljDVStUu0Fucz5mbFCSTEj_9YYMJne_0dLbzH5VzP6GDI1wdJVHIbj6MOeLq31o39FujGHTGOgm2M_-t4HNIluY_8W4uBNn6kPdJv8gPRvwfJ3cu6Kij8--hV5-v3rcfWnun9Y362W91XHhRirXcuFqy0wiwJt46Ta7fgCwEHXcaUa1TjWSddJYR22rWyNtDXnTCEzC2sMvyI_p7mHFF-OmEf9HI8plJUapGSyERzq4ppPrr3pUfvg4phMV8ri4LsY0PmiLxuleMOhYQWACehSzDmh04fym0lvGpg-xa6n2HWJXZ9i1yemnphcvGGP6dMpX0Lv7iuFfw</recordid><startdate>20160701</startdate><enddate>20160701</enddate><creator>De Filippis, V.</creator><creator>Dhara, B.</creator><creator>Scudo, G.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160701</creationdate><title>Generalized Derivations and Commuting Additive Maps on Multilinear Polynomials in Prime Rings</title><author>De Filippis, V. ; Dhara, B. ; Scudo, G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-b537f2d10de7ed4f89bb3611f1cc399494f0c8fc87dfe5585a8d23309e0a6daa3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Filippis, V.</creatorcontrib><creatorcontrib>Dhara, B.</creatorcontrib><creatorcontrib>Scudo, G.</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>De Filippis, V.</au><au>Dhara, B.</au><au>Scudo, G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Generalized Derivations and Commuting Additive Maps on Multilinear Polynomials in Prime Rings</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2016-07-01</date><risdate>2016</risdate><volume>68</volume><issue>2</issue><spage>203</spage><epage>223</epage><pages>203-223</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>Let R be a prime ring with characteristic different from 2 , let U be its right Utumi quotient ring, let C be its extended centroid, let F and G be additive maps on R , let f ( x 1 , . . . ,x n ) be a multilinear polynomial over C , and let I be a nonzero right ideal of R . We obtain information about the structure of R and describe the form of F and G in the following cases: [( F 2 + G )( f ( r 1 , . . . , r n )) , f ( r 1 , . . . , r n )] = 0 for all r 1 , . . . , r n ∈ R , where F and G are generalized derivations of R ; [( F 2 + G )( f ( r 1 , . . . , r n )) , f ( r 1 , . . . , r n )] = 0 for all r 1 , . . . , r n ∈ I , where F and G are derivations of R .</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-016-1219-0</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-5995
ispartof Ukrainian mathematical journal, 2016-07, Vol.68 (2), p.203-223
issn 0041-5995
1573-9376
language eng
recordid cdi_proquest_journals_1880847312
source SpringerLink Journals
subjects Algebra
Analysis
Applications of Mathematics
Geometry
Mathematics
Mathematics and Statistics
Polynomials
Statistics
title Generalized Derivations and Commuting Additive Maps on Multilinear Polynomials in Prime Rings
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T14%3A57%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Generalized%20Derivations%20and%20Commuting%20Additive%20Maps%20on%20Multilinear%20Polynomials%20in%20Prime%20Rings&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=De%20Filippis,%20V.&rft.date=2016-07-01&rft.volume=68&rft.issue=2&rft.spage=203&rft.epage=223&rft.pages=203-223&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-016-1219-0&rft_dat=%3Cgale_proqu%3EA499343140%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880847312&rft_id=info:pmid/&rft_galeid=A499343140&rfr_iscdi=true