Some properties of dynamical degrees with a view towards cubic fourfolds

Dynamical degrees and spectra can serve to distinguish birational automorphism groups of varieties in quantitative, as opposed to only qualitative, ways. We introduce and discuss some properties of those degrees and the Cremona degrees, which facilitate computing or deriving inequalities for them in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in the mathematical sciences 2016-11, Vol.3 (1), p.1-22, Article 23
Hauptverfasser: Böhning, Christian, Graf von Bothmer, Hans-Christian, Sosna, Pawel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dynamical degrees and spectra can serve to distinguish birational automorphism groups of varieties in quantitative, as opposed to only qualitative, ways. We introduce and discuss some properties of those degrees and the Cremona degrees, which facilitate computing or deriving inequalities for them in concrete cases: (generalized) lower semi-continuity, submultiplicativity, and an analog of Picard–Manin/Zariski–Riemann spaces for higher codimension cycles. We also specialize to cubic fourfolds and show that under certain genericity assumptions the first and second dynamical degrees of a composition of reflections in points on the cubic coincide.
ISSN:2197-9847
2522-0144
2197-9847
DOI:10.1186/s40687-016-0071-z