Liquid state of a hydrogen bond network in ice

It is theoretically shown that the Coulomb interaction between violations of the Bernal–Fowler rules leads to a temperature-induced stepwise increase in their concentration by 6–7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JETP letters 2016-08, Vol.104 (4), p.248-252
Hauptverfasser: Ryzhkin, M. I., Klyuev, A. V., Sinitsyn, V. V., Ryzhkin, I. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 252
container_issue 4
container_start_page 248
container_title JETP letters
container_volume 104
creator Ryzhkin, M. I.
Klyuev, A. V.
Sinitsyn, V. V.
Ryzhkin, I. A.
description It is theoretically shown that the Coulomb interaction between violations of the Bernal–Fowler rules leads to a temperature-induced stepwise increase in their concentration by 6–7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time and can be interpreted as melting of the hydrogen bond network. The new phase with the melted hydrogen lattice and survived oxygen one is unstable in the bulk of ice, and further drastic increase in the concentrations of oxygen interstitials and vacancies accomplishes the ice melting. The fraction of broken hydrogen bonds immediately after the melting is about 0.07 of their total number that implies an essential conservation of oxygen lattice in water.
doi_str_mv 10.1134/S0021364016160013
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880844992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880844992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-480317d7a9f13c877a0004c75a2072118d1e923a9b15768866452248542d4cf33</originalsourceid><addsrcrecordid>eNp1kE1LxDAYhIMoWKs_wFvAc9f3TdIkPcriFyx4UM8hm6ZrV212kxbZf29LPQjiaQ4zzwwMIZcIC0Qurp8BGHIpACVKAORHJEOooJBCq2OSTXYx-afkLKXtmEDNVUYWq3Y_tDVNve09DQ219O1Qx7DxHV2Hrqad779CfKdtR1vnz8lJYz-Sv_jRnLze3b4sH4rV0_3j8mZVOI6yL4QGjqpWtmqQO62UBQDhVGkZKDZO1-grxm21xlJJraUUJWNCl4LVwjWc5-Rq7t3FsB986s02DLEbJw1qDVqIauRzgnPKxZBS9I3ZxfbTxoNBMNMt5s8tI8NmJo3ZbuPjr-Z_oW-NrF-b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880844992</pqid></control><display><type>article</type><title>Liquid state of a hydrogen bond network in ice</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ryzhkin, M. I. ; Klyuev, A. V. ; Sinitsyn, V. V. ; Ryzhkin, I. A.</creator><creatorcontrib>Ryzhkin, M. I. ; Klyuev, A. V. ; Sinitsyn, V. V. ; Ryzhkin, I. A.</creatorcontrib><description>It is theoretically shown that the Coulomb interaction between violations of the Bernal–Fowler rules leads to a temperature-induced stepwise increase in their concentration by 6–7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time and can be interpreted as melting of the hydrogen bond network. The new phase with the melted hydrogen lattice and survived oxygen one is unstable in the bulk of ice, and further drastic increase in the concentrations of oxygen interstitials and vacancies accomplishes the ice melting. The fraction of broken hydrogen bonds immediately after the melting is about 0.07 of their total number that implies an essential conservation of oxygen lattice in water.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364016160013</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic ; Biological and Medical Physics ; Biophysics ; Condensed Matter ; Hydrogen bonds ; Interstitials ; Lattice vacancies ; Melting ; Molecular ; Optical and Plasma Physics ; Oxygen ; Particle and Nuclear Physics ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Relaxation time ; Solid State Physics ; Spintronics</subject><ispartof>JETP letters, 2016-08, Vol.104 (4), p.248-252</ispartof><rights>Pleiades Publishing, Inc. 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-480317d7a9f13c877a0004c75a2072118d1e923a9b15768866452248542d4cf33</citedby><cites>FETCH-LOGICAL-c316t-480317d7a9f13c877a0004c75a2072118d1e923a9b15768866452248542d4cf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021364016160013$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021364016160013$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ryzhkin, M. I.</creatorcontrib><creatorcontrib>Klyuev, A. V.</creatorcontrib><creatorcontrib>Sinitsyn, V. V.</creatorcontrib><creatorcontrib>Ryzhkin, I. A.</creatorcontrib><title>Liquid state of a hydrogen bond network in ice</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>It is theoretically shown that the Coulomb interaction between violations of the Bernal–Fowler rules leads to a temperature-induced stepwise increase in their concentration by 6–7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time and can be interpreted as melting of the hydrogen bond network. The new phase with the melted hydrogen lattice and survived oxygen one is unstable in the bulk of ice, and further drastic increase in the concentrations of oxygen interstitials and vacancies accomplishes the ice melting. The fraction of broken hydrogen bonds immediately after the melting is about 0.07 of their total number that implies an essential conservation of oxygen lattice in water.</description><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Condensed Matter</subject><subject>Hydrogen bonds</subject><subject>Interstitials</subject><subject>Lattice vacancies</subject><subject>Melting</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Oxygen</subject><subject>Particle and Nuclear Physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Relaxation time</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAYhIMoWKs_wFvAc9f3TdIkPcriFyx4UM8hm6ZrV212kxbZf29LPQjiaQ4zzwwMIZcIC0Qurp8BGHIpACVKAORHJEOooJBCq2OSTXYx-afkLKXtmEDNVUYWq3Y_tDVNve09DQ219O1Qx7DxHV2Hrqad779CfKdtR1vnz8lJYz-Sv_jRnLze3b4sH4rV0_3j8mZVOI6yL4QGjqpWtmqQO62UBQDhVGkZKDZO1-grxm21xlJJraUUJWNCl4LVwjWc5-Rq7t3FsB986s02DLEbJw1qDVqIauRzgnPKxZBS9I3ZxfbTxoNBMNMt5s8tI8NmJo3ZbuPjr-Z_oW-NrF-b</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Ryzhkin, M. I.</creator><creator>Klyuev, A. V.</creator><creator>Sinitsyn, V. V.</creator><creator>Ryzhkin, I. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160801</creationdate><title>Liquid state of a hydrogen bond network in ice</title><author>Ryzhkin, M. I. ; Klyuev, A. V. ; Sinitsyn, V. V. ; Ryzhkin, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-480317d7a9f13c877a0004c75a2072118d1e923a9b15768866452248542d4cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Condensed Matter</topic><topic>Hydrogen bonds</topic><topic>Interstitials</topic><topic>Lattice vacancies</topic><topic>Melting</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Oxygen</topic><topic>Particle and Nuclear Physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Relaxation time</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryzhkin, M. I.</creatorcontrib><creatorcontrib>Klyuev, A. V.</creatorcontrib><creatorcontrib>Sinitsyn, V. V.</creatorcontrib><creatorcontrib>Ryzhkin, I. A.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryzhkin, M. I.</au><au>Klyuev, A. V.</au><au>Sinitsyn, V. V.</au><au>Ryzhkin, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid state of a hydrogen bond network in ice</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>104</volume><issue>4</issue><spage>248</spage><epage>252</epage><pages>248-252</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>It is theoretically shown that the Coulomb interaction between violations of the Bernal–Fowler rules leads to a temperature-induced stepwise increase in their concentration by 6–7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time and can be interpreted as melting of the hydrogen bond network. The new phase with the melted hydrogen lattice and survived oxygen one is unstable in the bulk of ice, and further drastic increase in the concentrations of oxygen interstitials and vacancies accomplishes the ice melting. The fraction of broken hydrogen bonds immediately after the melting is about 0.07 of their total number that implies an essential conservation of oxygen lattice in water.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364016160013</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-3640
ispartof JETP letters, 2016-08, Vol.104 (4), p.248-252
issn 0021-3640
1090-6487
language eng
recordid cdi_proquest_journals_1880844992
source SpringerLink Journals - AutoHoldings
subjects Atomic
Biological and Medical Physics
Biophysics
Condensed Matter
Hydrogen bonds
Interstitials
Lattice vacancies
Melting
Molecular
Optical and Plasma Physics
Oxygen
Particle and Nuclear Physics
Phase transitions
Physics
Physics and Astronomy
Quantum Information Technology
Relaxation time
Solid State Physics
Spintronics
title Liquid state of a hydrogen bond network in ice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20state%20of%20a%20hydrogen%20bond%20network%20in%20ice&rft.jtitle=JETP%20letters&rft.au=Ryzhkin,%20M.%20I.&rft.date=2016-08-01&rft.volume=104&rft.issue=4&rft.spage=248&rft.epage=252&rft.pages=248-252&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364016160013&rft_dat=%3Cproquest_cross%3E1880844992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880844992&rft_id=info:pmid/&rfr_iscdi=true