Liquid state of a hydrogen bond network in ice
It is theoretically shown that the Coulomb interaction between violations of the Bernal–Fowler rules leads to a temperature-induced stepwise increase in their concentration by 6–7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time a...
Gespeichert in:
Veröffentlicht in: | JETP letters 2016-08, Vol.104 (4), p.248-252 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 252 |
---|---|
container_issue | 4 |
container_start_page | 248 |
container_title | JETP letters |
container_volume | 104 |
creator | Ryzhkin, M. I. Klyuev, A. V. Sinitsyn, V. V. Ryzhkin, I. A. |
description | It is theoretically shown that the Coulomb interaction between violations of the Bernal–Fowler rules leads to a temperature-induced stepwise increase in their concentration by 6–7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time and can be interpreted as melting of the hydrogen bond network. The new phase with the melted hydrogen lattice and survived oxygen one is unstable in the bulk of ice, and further drastic increase in the concentrations of oxygen interstitials and vacancies accomplishes the ice melting. The fraction of broken hydrogen bonds immediately after the melting is about 0.07 of their total number that implies an essential conservation of oxygen lattice in water. |
doi_str_mv | 10.1134/S0021364016160013 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880844992</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880844992</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-480317d7a9f13c877a0004c75a2072118d1e923a9b15768866452248542d4cf33</originalsourceid><addsrcrecordid>eNp1kE1LxDAYhIMoWKs_wFvAc9f3TdIkPcriFyx4UM8hm6ZrV212kxbZf29LPQjiaQ4zzwwMIZcIC0Qurp8BGHIpACVKAORHJEOooJBCq2OSTXYx-afkLKXtmEDNVUYWq3Y_tDVNve09DQ219O1Qx7DxHV2Hrqad779CfKdtR1vnz8lJYz-Sv_jRnLze3b4sH4rV0_3j8mZVOI6yL4QGjqpWtmqQO62UBQDhVGkZKDZO1-grxm21xlJJraUUJWNCl4LVwjWc5-Rq7t3FsB986s02DLEbJw1qDVqIauRzgnPKxZBS9I3ZxfbTxoNBMNMt5s8tI8NmJo3ZbuPjr-Z_oW-NrF-b</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880844992</pqid></control><display><type>article</type><title>Liquid state of a hydrogen bond network in ice</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ryzhkin, M. I. ; Klyuev, A. V. ; Sinitsyn, V. V. ; Ryzhkin, I. A.</creator><creatorcontrib>Ryzhkin, M. I. ; Klyuev, A. V. ; Sinitsyn, V. V. ; Ryzhkin, I. A.</creatorcontrib><description>It is theoretically shown that the Coulomb interaction between violations of the Bernal–Fowler rules leads to a temperature-induced stepwise increase in their concentration by 6–7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time and can be interpreted as melting of the hydrogen bond network. The new phase with the melted hydrogen lattice and survived oxygen one is unstable in the bulk of ice, and further drastic increase in the concentrations of oxygen interstitials and vacancies accomplishes the ice melting. The fraction of broken hydrogen bonds immediately after the melting is about 0.07 of their total number that implies an essential conservation of oxygen lattice in water.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364016160013</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Atomic ; Biological and Medical Physics ; Biophysics ; Condensed Matter ; Hydrogen bonds ; Interstitials ; Lattice vacancies ; Melting ; Molecular ; Optical and Plasma Physics ; Oxygen ; Particle and Nuclear Physics ; Phase transitions ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Relaxation time ; Solid State Physics ; Spintronics</subject><ispartof>JETP letters, 2016-08, Vol.104 (4), p.248-252</ispartof><rights>Pleiades Publishing, Inc. 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-480317d7a9f13c877a0004c75a2072118d1e923a9b15768866452248542d4cf33</citedby><cites>FETCH-LOGICAL-c316t-480317d7a9f13c877a0004c75a2072118d1e923a9b15768866452248542d4cf33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021364016160013$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021364016160013$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ryzhkin, M. I.</creatorcontrib><creatorcontrib>Klyuev, A. V.</creatorcontrib><creatorcontrib>Sinitsyn, V. V.</creatorcontrib><creatorcontrib>Ryzhkin, I. A.</creatorcontrib><title>Liquid state of a hydrogen bond network in ice</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>It is theoretically shown that the Coulomb interaction between violations of the Bernal–Fowler rules leads to a temperature-induced stepwise increase in their concentration by 6–7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time and can be interpreted as melting of the hydrogen bond network. The new phase with the melted hydrogen lattice and survived oxygen one is unstable in the bulk of ice, and further drastic increase in the concentrations of oxygen interstitials and vacancies accomplishes the ice melting. The fraction of broken hydrogen bonds immediately after the melting is about 0.07 of their total number that implies an essential conservation of oxygen lattice in water.</description><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Condensed Matter</subject><subject>Hydrogen bonds</subject><subject>Interstitials</subject><subject>Lattice vacancies</subject><subject>Melting</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Oxygen</subject><subject>Particle and Nuclear Physics</subject><subject>Phase transitions</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Relaxation time</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAYhIMoWKs_wFvAc9f3TdIkPcriFyx4UM8hm6ZrV212kxbZf29LPQjiaQ4zzwwMIZcIC0Qurp8BGHIpACVKAORHJEOooJBCq2OSTXYx-afkLKXtmEDNVUYWq3Y_tDVNve09DQ219O1Qx7DxHV2Hrqad779CfKdtR1vnz8lJYz-Sv_jRnLze3b4sH4rV0_3j8mZVOI6yL4QGjqpWtmqQO62UBQDhVGkZKDZO1-grxm21xlJJraUUJWNCl4LVwjWc5-Rq7t3FsB986s02DLEbJw1qDVqIauRzgnPKxZBS9I3ZxfbTxoNBMNMt5s8tI8NmJo3ZbuPjr-Z_oW-NrF-b</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Ryzhkin, M. I.</creator><creator>Klyuev, A. V.</creator><creator>Sinitsyn, V. V.</creator><creator>Ryzhkin, I. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160801</creationdate><title>Liquid state of a hydrogen bond network in ice</title><author>Ryzhkin, M. I. ; Klyuev, A. V. ; Sinitsyn, V. V. ; Ryzhkin, I. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-480317d7a9f13c877a0004c75a2072118d1e923a9b15768866452248542d4cf33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Condensed Matter</topic><topic>Hydrogen bonds</topic><topic>Interstitials</topic><topic>Lattice vacancies</topic><topic>Melting</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Oxygen</topic><topic>Particle and Nuclear Physics</topic><topic>Phase transitions</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Relaxation time</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryzhkin, M. I.</creatorcontrib><creatorcontrib>Klyuev, A. V.</creatorcontrib><creatorcontrib>Sinitsyn, V. V.</creatorcontrib><creatorcontrib>Ryzhkin, I. A.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryzhkin, M. I.</au><au>Klyuev, A. V.</au><au>Sinitsyn, V. V.</au><au>Ryzhkin, I. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Liquid state of a hydrogen bond network in ice</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2016-08-01</date><risdate>2016</risdate><volume>104</volume><issue>4</issue><spage>248</spage><epage>252</epage><pages>248-252</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>It is theoretically shown that the Coulomb interaction between violations of the Bernal–Fowler rules leads to a temperature-induced stepwise increase in their concentration by 6–7 orders of magnitude. This first-order phase transition is accompanied by commensurable decrease in the relaxation time and can be interpreted as melting of the hydrogen bond network. The new phase with the melted hydrogen lattice and survived oxygen one is unstable in the bulk of ice, and further drastic increase in the concentrations of oxygen interstitials and vacancies accomplishes the ice melting. The fraction of broken hydrogen bonds immediately after the melting is about 0.07 of their total number that implies an essential conservation of oxygen lattice in water.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364016160013</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-3640 |
ispartof | JETP letters, 2016-08, Vol.104 (4), p.248-252 |
issn | 0021-3640 1090-6487 |
language | eng |
recordid | cdi_proquest_journals_1880844992 |
source | SpringerLink Journals - AutoHoldings |
subjects | Atomic Biological and Medical Physics Biophysics Condensed Matter Hydrogen bonds Interstitials Lattice vacancies Melting Molecular Optical and Plasma Physics Oxygen Particle and Nuclear Physics Phase transitions Physics Physics and Astronomy Quantum Information Technology Relaxation time Solid State Physics Spintronics |
title | Liquid state of a hydrogen bond network in ice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A57%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Liquid%20state%20of%20a%20hydrogen%20bond%20network%20in%20ice&rft.jtitle=JETP%20letters&rft.au=Ryzhkin,%20M.%20I.&rft.date=2016-08-01&rft.volume=104&rft.issue=4&rft.spage=248&rft.epage=252&rft.pages=248-252&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364016160013&rft_dat=%3Cproquest_cross%3E1880844992%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880844992&rft_id=info:pmid/&rfr_iscdi=true |