An extension of the LMO functor

Cheptea, Habiro and Massuyeau constructed the LMO functor, which is defined on a certain category of cobordisms between two surfaces with at most one boundary component. In this paper, we extend the LMO functor to the case of any number of boundary components, and our functor reflects relations amon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geometriae dedicata 2016-12, Vol.185 (1), p.271-306
1. Verfasser: Nozaki, Yuta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 306
container_issue 1
container_start_page 271
container_title Geometriae dedicata
container_volume 185
creator Nozaki, Yuta
description Cheptea, Habiro and Massuyeau constructed the LMO functor, which is defined on a certain category of cobordisms between two surfaces with at most one boundary component. In this paper, we extend the LMO functor to the case of any number of boundary components, and our functor reflects relations among the parts corresponding to the genera and boundary components of surfaces. We also discuss a relationship with finite-type invariants and Milnor invariants.
doi_str_mv 10.1007/s10711-016-0176-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880842670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880842670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d5f73798eac13cf6404481640f5191bcdbf568fb8b5165257c909250f34da15f3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoWEd_gCsLrqP3pnkuh8EXVGaj69Cmic6g7Zi04Px7M9SFGxeXsznfufARcolwgwDqNiEoRAoo8ylJ90ekQKEYNSj1MSkAuKRCCXFKzlLaAoBRihXkatmX_nv0fdoMfTmEcnz3Zf28LsPUu3GI5-QkNB_JX_zmgrze372sHmm9fnhaLWvqKpQj7URQlTLaNw4rFyQHzjXmCAINtq5rg5A6tLoVKAUTyhkwTECoeNegCNWCXM-7uzh8TT6NdjtMsc8vLWoNmjOpILdwbrk4pBR9sLu4-Wzi3iLYgwc7e7DZgz14sPvMsJlJudu_-fhn-V_oBz1gXZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880842670</pqid></control><display><type>article</type><title>An extension of the LMO functor</title><source>SpringerLink Journals</source><creator>Nozaki, Yuta</creator><creatorcontrib>Nozaki, Yuta</creatorcontrib><description>Cheptea, Habiro and Massuyeau constructed the LMO functor, which is defined on a certain category of cobordisms between two surfaces with at most one boundary component. In this paper, we extend the LMO functor to the case of any number of boundary components, and our functor reflects relations among the parts corresponding to the genera and boundary components of surfaces. We also discuss a relationship with finite-type invariants and Milnor invariants.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-016-0176-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Hyperbolic Geometry ; Invariants ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2016-12, Vol.185 (1), p.271-306</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d5f73798eac13cf6404481640f5191bcdbf568fb8b5165257c909250f34da15f3</citedby><cites>FETCH-LOGICAL-c316t-d5f73798eac13cf6404481640f5191bcdbf568fb8b5165257c909250f34da15f3</cites><orcidid>0000-0003-3223-0153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-016-0176-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-016-0176-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nozaki, Yuta</creatorcontrib><title>An extension of the LMO functor</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>Cheptea, Habiro and Massuyeau constructed the LMO functor, which is defined on a certain category of cobordisms between two surfaces with at most one boundary component. In this paper, we extend the LMO functor to the case of any number of boundary components, and our functor reflects relations among the parts corresponding to the genera and boundary components of surfaces. We also discuss a relationship with finite-type invariants and Milnor invariants.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Hyperbolic Geometry</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoWEd_gCsLrqP3pnkuh8EXVGaj69Cmic6g7Zi04Px7M9SFGxeXsznfufARcolwgwDqNiEoRAoo8ylJ90ekQKEYNSj1MSkAuKRCCXFKzlLaAoBRihXkatmX_nv0fdoMfTmEcnz3Zf28LsPUu3GI5-QkNB_JX_zmgrze372sHmm9fnhaLWvqKpQj7URQlTLaNw4rFyQHzjXmCAINtq5rg5A6tLoVKAUTyhkwTECoeNegCNWCXM-7uzh8TT6NdjtMsc8vLWoNmjOpILdwbrk4pBR9sLu4-Wzi3iLYgwc7e7DZgz14sPvMsJlJudu_-fhn-V_oBz1gXZA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Nozaki, Yuta</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3223-0153</orcidid></search><sort><creationdate>20161201</creationdate><title>An extension of the LMO functor</title><author>Nozaki, Yuta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d5f73798eac13cf6404481640f5191bcdbf568fb8b5165257c909250f34da15f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Hyperbolic Geometry</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nozaki, Yuta</creatorcontrib><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nozaki, Yuta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extension of the LMO functor</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>185</volume><issue>1</issue><spage>271</spage><epage>306</epage><pages>271-306</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>Cheptea, Habiro and Massuyeau constructed the LMO functor, which is defined on a certain category of cobordisms between two surfaces with at most one boundary component. In this paper, we extend the LMO functor to the case of any number of boundary components, and our functor reflects relations among the parts corresponding to the genera and boundary components of surfaces. We also discuss a relationship with finite-type invariants and Milnor invariants.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-016-0176-y</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-3223-0153</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0046-5755
ispartof Geometriae dedicata, 2016-12, Vol.185 (1), p.271-306
issn 0046-5755
1572-9168
language eng
recordid cdi_proquest_journals_1880842670
source SpringerLink Journals
subjects Algebraic Geometry
Convex and Discrete Geometry
Differential Geometry
Hyperbolic Geometry
Invariants
Mathematics
Mathematics and Statistics
Original Paper
Projective Geometry
Topology
title An extension of the LMO functor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extension%20of%20the%20LMO%20functor&rft.jtitle=Geometriae%20dedicata&rft.au=Nozaki,%20Yuta&rft.date=2016-12-01&rft.volume=185&rft.issue=1&rft.spage=271&rft.epage=306&rft.pages=271-306&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-016-0176-y&rft_dat=%3Cproquest_cross%3E1880842670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880842670&rft_id=info:pmid/&rfr_iscdi=true