An extension of the LMO functor
Cheptea, Habiro and Massuyeau constructed the LMO functor, which is defined on a certain category of cobordisms between two surfaces with at most one boundary component. In this paper, we extend the LMO functor to the case of any number of boundary components, and our functor reflects relations amon...
Gespeichert in:
Veröffentlicht in: | Geometriae dedicata 2016-12, Vol.185 (1), p.271-306 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | 1 |
container_start_page | 271 |
container_title | Geometriae dedicata |
container_volume | 185 |
creator | Nozaki, Yuta |
description | Cheptea, Habiro and Massuyeau constructed the LMO functor, which is defined on a certain category of cobordisms between two surfaces with at most one boundary component. In this paper, we extend the LMO functor to the case of any number of boundary components, and our functor reflects relations among the parts corresponding to the genera and boundary components of surfaces. We also discuss a relationship with finite-type invariants and Milnor invariants. |
doi_str_mv | 10.1007/s10711-016-0176-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880842670</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880842670</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d5f73798eac13cf6404481640f5191bcdbf568fb8b5165257c909250f34da15f3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoWEd_gCsLrqP3pnkuh8EXVGaj69Cmic6g7Zi04Px7M9SFGxeXsznfufARcolwgwDqNiEoRAoo8ylJ90ekQKEYNSj1MSkAuKRCCXFKzlLaAoBRihXkatmX_nv0fdoMfTmEcnz3Zf28LsPUu3GI5-QkNB_JX_zmgrze372sHmm9fnhaLWvqKpQj7URQlTLaNw4rFyQHzjXmCAINtq5rg5A6tLoVKAUTyhkwTECoeNegCNWCXM-7uzh8TT6NdjtMsc8vLWoNmjOpILdwbrk4pBR9sLu4-Wzi3iLYgwc7e7DZgz14sPvMsJlJudu_-fhn-V_oBz1gXZA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880842670</pqid></control><display><type>article</type><title>An extension of the LMO functor</title><source>SpringerLink Journals</source><creator>Nozaki, Yuta</creator><creatorcontrib>Nozaki, Yuta</creatorcontrib><description>Cheptea, Habiro and Massuyeau constructed the LMO functor, which is defined on a certain category of cobordisms between two surfaces with at most one boundary component. In this paper, we extend the LMO functor to the case of any number of boundary components, and our functor reflects relations among the parts corresponding to the genera and boundary components of surfaces. We also discuss a relationship with finite-type invariants and Milnor invariants.</description><identifier>ISSN: 0046-5755</identifier><identifier>EISSN: 1572-9168</identifier><identifier>DOI: 10.1007/s10711-016-0176-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Algebraic Geometry ; Convex and Discrete Geometry ; Differential Geometry ; Hyperbolic Geometry ; Invariants ; Mathematics ; Mathematics and Statistics ; Original Paper ; Projective Geometry ; Topology</subject><ispartof>Geometriae dedicata, 2016-12, Vol.185 (1), p.271-306</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d5f73798eac13cf6404481640f5191bcdbf568fb8b5165257c909250f34da15f3</citedby><cites>FETCH-LOGICAL-c316t-d5f73798eac13cf6404481640f5191bcdbf568fb8b5165257c909250f34da15f3</cites><orcidid>0000-0003-3223-0153</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10711-016-0176-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10711-016-0176-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Nozaki, Yuta</creatorcontrib><title>An extension of the LMO functor</title><title>Geometriae dedicata</title><addtitle>Geom Dedicata</addtitle><description>Cheptea, Habiro and Massuyeau constructed the LMO functor, which is defined on a certain category of cobordisms between two surfaces with at most one boundary component. In this paper, we extend the LMO functor to the case of any number of boundary components, and our functor reflects relations among the parts corresponding to the genera and boundary components of surfaces. We also discuss a relationship with finite-type invariants and Milnor invariants.</description><subject>Algebraic Geometry</subject><subject>Convex and Discrete Geometry</subject><subject>Differential Geometry</subject><subject>Hyperbolic Geometry</subject><subject>Invariants</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Original Paper</subject><subject>Projective Geometry</subject><subject>Topology</subject><issn>0046-5755</issn><issn>1572-9168</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoWEd_gCsLrqP3pnkuh8EXVGaj69Cmic6g7Zi04Px7M9SFGxeXsznfufARcolwgwDqNiEoRAoo8ylJ90ekQKEYNSj1MSkAuKRCCXFKzlLaAoBRihXkatmX_nv0fdoMfTmEcnz3Zf28LsPUu3GI5-QkNB_JX_zmgrze372sHmm9fnhaLWvqKpQj7URQlTLaNw4rFyQHzjXmCAINtq5rg5A6tLoVKAUTyhkwTECoeNegCNWCXM-7uzh8TT6NdjtMsc8vLWoNmjOpILdwbrk4pBR9sLu4-Wzi3iLYgwc7e7DZgz14sPvMsJlJudu_-fhn-V_oBz1gXZA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Nozaki, Yuta</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3223-0153</orcidid></search><sort><creationdate>20161201</creationdate><title>An extension of the LMO functor</title><author>Nozaki, Yuta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d5f73798eac13cf6404481640f5191bcdbf568fb8b5165257c909250f34da15f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebraic Geometry</topic><topic>Convex and Discrete Geometry</topic><topic>Differential Geometry</topic><topic>Hyperbolic Geometry</topic><topic>Invariants</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Original Paper</topic><topic>Projective Geometry</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nozaki, Yuta</creatorcontrib><collection>CrossRef</collection><jtitle>Geometriae dedicata</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nozaki, Yuta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An extension of the LMO functor</atitle><jtitle>Geometriae dedicata</jtitle><stitle>Geom Dedicata</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>185</volume><issue>1</issue><spage>271</spage><epage>306</epage><pages>271-306</pages><issn>0046-5755</issn><eissn>1572-9168</eissn><abstract>Cheptea, Habiro and Massuyeau constructed the LMO functor, which is defined on a certain category of cobordisms between two surfaces with at most one boundary component. In this paper, we extend the LMO functor to the case of any number of boundary components, and our functor reflects relations among the parts corresponding to the genera and boundary components of surfaces. We also discuss a relationship with finite-type invariants and Milnor invariants.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10711-016-0176-y</doi><tpages>36</tpages><orcidid>https://orcid.org/0000-0003-3223-0153</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0046-5755 |
ispartof | Geometriae dedicata, 2016-12, Vol.185 (1), p.271-306 |
issn | 0046-5755 1572-9168 |
language | eng |
recordid | cdi_proquest_journals_1880842670 |
source | SpringerLink Journals |
subjects | Algebraic Geometry Convex and Discrete Geometry Differential Geometry Hyperbolic Geometry Invariants Mathematics Mathematics and Statistics Original Paper Projective Geometry Topology |
title | An extension of the LMO functor |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T11%3A16%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20extension%20of%20the%20LMO%20functor&rft.jtitle=Geometriae%20dedicata&rft.au=Nozaki,%20Yuta&rft.date=2016-12-01&rft.volume=185&rft.issue=1&rft.spage=271&rft.epage=306&rft.pages=271-306&rft.issn=0046-5755&rft.eissn=1572-9168&rft_id=info:doi/10.1007/s10711-016-0176-y&rft_dat=%3Cproquest_cross%3E1880842670%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880842670&rft_id=info:pmid/&rfr_iscdi=true |