Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading
Bio-inspired engineering design has drawn increased attention in recent years for the excellent structural and mechanical properties of the biological systems. In this study, the horsetail-bionic thin-walled structures (HBTSs) were investigated for their crashworthiness under axial dynamic loading....
Gespeichert in:
Veröffentlicht in: | International journal of mechanics and materials in design 2016-12, Vol.12 (4), p.563-576 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 576 |
---|---|
container_issue | 4 |
container_start_page | 563 |
container_title | International journal of mechanics and materials in design |
container_volume | 12 |
creator | Xiao, Youye Yin, Hanfeng Fang, Hongbing Wen, Guilin |
description | Bio-inspired engineering design has drawn increased attention in recent years for the excellent structural and mechanical properties of the biological systems. In this study, the horsetail-bionic thin-walled structures (HBTSs) were investigated for their crashworthiness under axial dynamic loading. Six HBTSs with different cross section configurations (i.e., number of cells) were evaluated using nonlinear finite element (FE) simulations. To obtain the optimal design of the HBTSs, an ensemble metamodel-based multi-objective optimization method was employed to maximize the specific energy absorption while minimizing maximum impact force of the HBTSs. Using the ensemble metamodeling, FE simulations and the NSGA-II algorithm, the Pareto optimum designs of all six HBTSs were obtained and the HBTS with 16 cells were found to have the best crashworthiness. An optimum design of the HBTS with 16 cells was verified using FE simulation and found to have good agreement with simulation results. |
doi_str_mv | 10.1007/s10999-016-9341-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880842125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880842125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-34edbffff018447eeda2a1c732e9413666cf54543d4092b1e38fe4611bcf69463</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgsMRt8sePEI6r4JyGxwIgsJ3ZaV6ld7ESl3x5HYWDhlrvh997dPYSugd4CpdVdAiqlJBQEkYwDESdoAWXFSF1zOJ1mIQlUwM7RRUpbShmFul6gz1XUaXMIcdg4b1PCxia39jh0eBNisoN2PWlc8K7FE0IOuu-twWmIYzuM0SY8emMj1t9O99gcvd5ltA_aOL--RGed7pO9-u1L9PH48L56Jq9vTy-r-1fSMhADYdyapsuVb-K8stboQkNbscJKDkwI0XYlLzkznMqiAcvqznIB0LSdkFywJbqZffcxfI02DWobxujzSpW_pDUvoCgzBTPVxpBStJ3aR7fT8aiAqilFNaeocopqSlFNzsWsSZn1axv_OP8r-gFLlnZn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880842125</pqid></control><display><type>article</type><title>Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xiao, Youye ; Yin, Hanfeng ; Fang, Hongbing ; Wen, Guilin</creator><creatorcontrib>Xiao, Youye ; Yin, Hanfeng ; Fang, Hongbing ; Wen, Guilin</creatorcontrib><description>Bio-inspired engineering design has drawn increased attention in recent years for the excellent structural and mechanical properties of the biological systems. In this study, the horsetail-bionic thin-walled structures (HBTSs) were investigated for their crashworthiness under axial dynamic loading. Six HBTSs with different cross section configurations (i.e., number of cells) were evaluated using nonlinear finite element (FE) simulations. To obtain the optimal design of the HBTSs, an ensemble metamodel-based multi-objective optimization method was employed to maximize the specific energy absorption while minimizing maximum impact force of the HBTSs. Using the ensemble metamodeling, FE simulations and the NSGA-II algorithm, the Pareto optimum designs of all six HBTSs were obtained and the HBTS with 16 cells were found to have the best crashworthiness. An optimum design of the HBTS with 16 cells was verified using FE simulation and found to have good agreement with simulation results.</description><identifier>ISSN: 1569-1713</identifier><identifier>EISSN: 1573-8841</identifier><identifier>DOI: 10.1007/s10999-016-9341-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biological properties ; Biomimetics ; Bionics ; Characterization and Evaluation of Materials ; Classical Mechanics ; Computer simulation ; Crashworthiness ; Design engineering ; Energy absorption ; Engineering ; Engineering Design ; Finite element method ; Impact loads ; Impact strength ; Mechanical properties ; Multiple objective analysis ; Optimization ; Pareto optimum ; Simulation ; Solid Mechanics ; Thin wall structures</subject><ispartof>International journal of mechanics and materials in design, 2016-12, Vol.12 (4), p.563-576</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-34edbffff018447eeda2a1c732e9413666cf54543d4092b1e38fe4611bcf69463</citedby><cites>FETCH-LOGICAL-c316t-34edbffff018447eeda2a1c732e9413666cf54543d4092b1e38fe4611bcf69463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10999-016-9341-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10999-016-9341-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xiao, Youye</creatorcontrib><creatorcontrib>Yin, Hanfeng</creatorcontrib><creatorcontrib>Fang, Hongbing</creatorcontrib><creatorcontrib>Wen, Guilin</creatorcontrib><title>Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading</title><title>International journal of mechanics and materials in design</title><addtitle>Int J Mech Mater Des</addtitle><description>Bio-inspired engineering design has drawn increased attention in recent years for the excellent structural and mechanical properties of the biological systems. In this study, the horsetail-bionic thin-walled structures (HBTSs) were investigated for their crashworthiness under axial dynamic loading. Six HBTSs with different cross section configurations (i.e., number of cells) were evaluated using nonlinear finite element (FE) simulations. To obtain the optimal design of the HBTSs, an ensemble metamodel-based multi-objective optimization method was employed to maximize the specific energy absorption while minimizing maximum impact force of the HBTSs. Using the ensemble metamodeling, FE simulations and the NSGA-II algorithm, the Pareto optimum designs of all six HBTSs were obtained and the HBTS with 16 cells were found to have the best crashworthiness. An optimum design of the HBTS with 16 cells was verified using FE simulation and found to have good agreement with simulation results.</description><subject>Biological properties</subject><subject>Biomimetics</subject><subject>Bionics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Crashworthiness</subject><subject>Design engineering</subject><subject>Energy absorption</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Impact loads</subject><subject>Impact strength</subject><subject>Mechanical properties</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pareto optimum</subject><subject>Simulation</subject><subject>Solid Mechanics</subject><subject>Thin wall structures</subject><issn>1569-1713</issn><issn>1573-8841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqXwAdgsMRt8sePEI6r4JyGxwIgsJ3ZaV6ld7ESl3x5HYWDhlrvh997dPYSugd4CpdVdAiqlJBQEkYwDESdoAWXFSF1zOJ1mIQlUwM7RRUpbShmFul6gz1XUaXMIcdg4b1PCxia39jh0eBNisoN2PWlc8K7FE0IOuu-twWmIYzuM0SY8emMj1t9O99gcvd5ltA_aOL--RGed7pO9-u1L9PH48L56Jq9vTy-r-1fSMhADYdyapsuVb-K8stboQkNbscJKDkwI0XYlLzkznMqiAcvqznIB0LSdkFywJbqZffcxfI02DWobxujzSpW_pDUvoCgzBTPVxpBStJ3aR7fT8aiAqilFNaeocopqSlFNzsWsSZn1axv_OP8r-gFLlnZn</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Xiao, Youye</creator><creator>Yin, Hanfeng</creator><creator>Fang, Hongbing</creator><creator>Wen, Guilin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading</title><author>Xiao, Youye ; Yin, Hanfeng ; Fang, Hongbing ; Wen, Guilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-34edbffff018447eeda2a1c732e9413666cf54543d4092b1e38fe4611bcf69463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological properties</topic><topic>Biomimetics</topic><topic>Bionics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Crashworthiness</topic><topic>Design engineering</topic><topic>Energy absorption</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Impact loads</topic><topic>Impact strength</topic><topic>Mechanical properties</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pareto optimum</topic><topic>Simulation</topic><topic>Solid Mechanics</topic><topic>Thin wall structures</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Youye</creatorcontrib><creatorcontrib>Yin, Hanfeng</creatorcontrib><creatorcontrib>Fang, Hongbing</creatorcontrib><creatorcontrib>Wen, Guilin</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of mechanics and materials in design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Youye</au><au>Yin, Hanfeng</au><au>Fang, Hongbing</au><au>Wen, Guilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading</atitle><jtitle>International journal of mechanics and materials in design</jtitle><stitle>Int J Mech Mater Des</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>12</volume><issue>4</issue><spage>563</spage><epage>576</epage><pages>563-576</pages><issn>1569-1713</issn><eissn>1573-8841</eissn><abstract>Bio-inspired engineering design has drawn increased attention in recent years for the excellent structural and mechanical properties of the biological systems. In this study, the horsetail-bionic thin-walled structures (HBTSs) were investigated for their crashworthiness under axial dynamic loading. Six HBTSs with different cross section configurations (i.e., number of cells) were evaluated using nonlinear finite element (FE) simulations. To obtain the optimal design of the HBTSs, an ensemble metamodel-based multi-objective optimization method was employed to maximize the specific energy absorption while minimizing maximum impact force of the HBTSs. Using the ensemble metamodeling, FE simulations and the NSGA-II algorithm, the Pareto optimum designs of all six HBTSs were obtained and the HBTS with 16 cells were found to have the best crashworthiness. An optimum design of the HBTS with 16 cells was verified using FE simulation and found to have good agreement with simulation results.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10999-016-9341-6</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1569-1713 |
ispartof | International journal of mechanics and materials in design, 2016-12, Vol.12 (4), p.563-576 |
issn | 1569-1713 1573-8841 |
language | eng |
recordid | cdi_proquest_journals_1880842125 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biological properties Biomimetics Bionics Characterization and Evaluation of Materials Classical Mechanics Computer simulation Crashworthiness Design engineering Energy absorption Engineering Engineering Design Finite element method Impact loads Impact strength Mechanical properties Multiple objective analysis Optimization Pareto optimum Simulation Solid Mechanics Thin wall structures |
title | Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crashworthiness%20design%20of%20horsetail-bionic%20thin-walled%20structures%20under%20axial%20dynamic%20loading&rft.jtitle=International%20journal%20of%20mechanics%20and%20materials%20in%20design&rft.au=Xiao,%20Youye&rft.date=2016-12-01&rft.volume=12&rft.issue=4&rft.spage=563&rft.epage=576&rft.pages=563-576&rft.issn=1569-1713&rft.eissn=1573-8841&rft_id=info:doi/10.1007/s10999-016-9341-6&rft_dat=%3Cproquest_cross%3E1880842125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880842125&rft_id=info:pmid/&rfr_iscdi=true |