Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading

Bio-inspired engineering design has drawn increased attention in recent years for the excellent structural and mechanical properties of the biological systems. In this study, the horsetail-bionic thin-walled structures (HBTSs) were investigated for their crashworthiness under axial dynamic loading....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of mechanics and materials in design 2016-12, Vol.12 (4), p.563-576
Hauptverfasser: Xiao, Youye, Yin, Hanfeng, Fang, Hongbing, Wen, Guilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 576
container_issue 4
container_start_page 563
container_title International journal of mechanics and materials in design
container_volume 12
creator Xiao, Youye
Yin, Hanfeng
Fang, Hongbing
Wen, Guilin
description Bio-inspired engineering design has drawn increased attention in recent years for the excellent structural and mechanical properties of the biological systems. In this study, the horsetail-bionic thin-walled structures (HBTSs) were investigated for their crashworthiness under axial dynamic loading. Six HBTSs with different cross section configurations (i.e., number of cells) were evaluated using nonlinear finite element (FE) simulations. To obtain the optimal design of the HBTSs, an ensemble metamodel-based multi-objective optimization method was employed to maximize the specific energy absorption while minimizing maximum impact force of the HBTSs. Using the ensemble metamodeling, FE simulations and the NSGA-II algorithm, the Pareto optimum designs of all six HBTSs were obtained and the HBTS with 16 cells were found to have the best crashworthiness. An optimum design of the HBTS with 16 cells was verified using FE simulation and found to have good agreement with simulation results.
doi_str_mv 10.1007/s10999-016-9341-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880842125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880842125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-34edbffff018447eeda2a1c732e9413666cf54543d4092b1e38fe4611bcf69463</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EEqXwAdgsMRt8sePEI6r4JyGxwIgsJ3ZaV6ld7ESl3x5HYWDhlrvh997dPYSugd4CpdVdAiqlJBQEkYwDESdoAWXFSF1zOJ1mIQlUwM7RRUpbShmFul6gz1XUaXMIcdg4b1PCxia39jh0eBNisoN2PWlc8K7FE0IOuu-twWmIYzuM0SY8emMj1t9O99gcvd5ltA_aOL--RGed7pO9-u1L9PH48L56Jq9vTy-r-1fSMhADYdyapsuVb-K8stboQkNbscJKDkwI0XYlLzkznMqiAcvqznIB0LSdkFywJbqZffcxfI02DWobxujzSpW_pDUvoCgzBTPVxpBStJ3aR7fT8aiAqilFNaeocopqSlFNzsWsSZn1axv_OP8r-gFLlnZn</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880842125</pqid></control><display><type>article</type><title>Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading</title><source>SpringerLink Journals - AutoHoldings</source><creator>Xiao, Youye ; Yin, Hanfeng ; Fang, Hongbing ; Wen, Guilin</creator><creatorcontrib>Xiao, Youye ; Yin, Hanfeng ; Fang, Hongbing ; Wen, Guilin</creatorcontrib><description>Bio-inspired engineering design has drawn increased attention in recent years for the excellent structural and mechanical properties of the biological systems. In this study, the horsetail-bionic thin-walled structures (HBTSs) were investigated for their crashworthiness under axial dynamic loading. Six HBTSs with different cross section configurations (i.e., number of cells) were evaluated using nonlinear finite element (FE) simulations. To obtain the optimal design of the HBTSs, an ensemble metamodel-based multi-objective optimization method was employed to maximize the specific energy absorption while minimizing maximum impact force of the HBTSs. Using the ensemble metamodeling, FE simulations and the NSGA-II algorithm, the Pareto optimum designs of all six HBTSs were obtained and the HBTS with 16 cells were found to have the best crashworthiness. An optimum design of the HBTS with 16 cells was verified using FE simulation and found to have good agreement with simulation results.</description><identifier>ISSN: 1569-1713</identifier><identifier>EISSN: 1573-8841</identifier><identifier>DOI: 10.1007/s10999-016-9341-6</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biological properties ; Biomimetics ; Bionics ; Characterization and Evaluation of Materials ; Classical Mechanics ; Computer simulation ; Crashworthiness ; Design engineering ; Energy absorption ; Engineering ; Engineering Design ; Finite element method ; Impact loads ; Impact strength ; Mechanical properties ; Multiple objective analysis ; Optimization ; Pareto optimum ; Simulation ; Solid Mechanics ; Thin wall structures</subject><ispartof>International journal of mechanics and materials in design, 2016-12, Vol.12 (4), p.563-576</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-34edbffff018447eeda2a1c732e9413666cf54543d4092b1e38fe4611bcf69463</citedby><cites>FETCH-LOGICAL-c316t-34edbffff018447eeda2a1c732e9413666cf54543d4092b1e38fe4611bcf69463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10999-016-9341-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10999-016-9341-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Xiao, Youye</creatorcontrib><creatorcontrib>Yin, Hanfeng</creatorcontrib><creatorcontrib>Fang, Hongbing</creatorcontrib><creatorcontrib>Wen, Guilin</creatorcontrib><title>Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading</title><title>International journal of mechanics and materials in design</title><addtitle>Int J Mech Mater Des</addtitle><description>Bio-inspired engineering design has drawn increased attention in recent years for the excellent structural and mechanical properties of the biological systems. In this study, the horsetail-bionic thin-walled structures (HBTSs) were investigated for their crashworthiness under axial dynamic loading. Six HBTSs with different cross section configurations (i.e., number of cells) were evaluated using nonlinear finite element (FE) simulations. To obtain the optimal design of the HBTSs, an ensemble metamodel-based multi-objective optimization method was employed to maximize the specific energy absorption while minimizing maximum impact force of the HBTSs. Using the ensemble metamodeling, FE simulations and the NSGA-II algorithm, the Pareto optimum designs of all six HBTSs were obtained and the HBTS with 16 cells were found to have the best crashworthiness. An optimum design of the HBTS with 16 cells was verified using FE simulation and found to have good agreement with simulation results.</description><subject>Biological properties</subject><subject>Biomimetics</subject><subject>Bionics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Computer simulation</subject><subject>Crashworthiness</subject><subject>Design engineering</subject><subject>Energy absorption</subject><subject>Engineering</subject><subject>Engineering Design</subject><subject>Finite element method</subject><subject>Impact loads</subject><subject>Impact strength</subject><subject>Mechanical properties</subject><subject>Multiple objective analysis</subject><subject>Optimization</subject><subject>Pareto optimum</subject><subject>Simulation</subject><subject>Solid Mechanics</subject><subject>Thin wall structures</subject><issn>1569-1713</issn><issn>1573-8841</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EEqXwAdgsMRt8sePEI6r4JyGxwIgsJ3ZaV6ld7ESl3x5HYWDhlrvh997dPYSugd4CpdVdAiqlJBQEkYwDESdoAWXFSF1zOJ1mIQlUwM7RRUpbShmFul6gz1XUaXMIcdg4b1PCxia39jh0eBNisoN2PWlc8K7FE0IOuu-twWmIYzuM0SY8emMj1t9O99gcvd5ltA_aOL--RGed7pO9-u1L9PH48L56Jq9vTy-r-1fSMhADYdyapsuVb-K8stboQkNbscJKDkwI0XYlLzkznMqiAcvqznIB0LSdkFywJbqZffcxfI02DWobxujzSpW_pDUvoCgzBTPVxpBStJ3aR7fT8aiAqilFNaeocopqSlFNzsWsSZn1axv_OP8r-gFLlnZn</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Xiao, Youye</creator><creator>Yin, Hanfeng</creator><creator>Fang, Hongbing</creator><creator>Wen, Guilin</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading</title><author>Xiao, Youye ; Yin, Hanfeng ; Fang, Hongbing ; Wen, Guilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-34edbffff018447eeda2a1c732e9413666cf54543d4092b1e38fe4611bcf69463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biological properties</topic><topic>Biomimetics</topic><topic>Bionics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Computer simulation</topic><topic>Crashworthiness</topic><topic>Design engineering</topic><topic>Energy absorption</topic><topic>Engineering</topic><topic>Engineering Design</topic><topic>Finite element method</topic><topic>Impact loads</topic><topic>Impact strength</topic><topic>Mechanical properties</topic><topic>Multiple objective analysis</topic><topic>Optimization</topic><topic>Pareto optimum</topic><topic>Simulation</topic><topic>Solid Mechanics</topic><topic>Thin wall structures</topic><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Youye</creatorcontrib><creatorcontrib>Yin, Hanfeng</creatorcontrib><creatorcontrib>Fang, Hongbing</creatorcontrib><creatorcontrib>Wen, Guilin</creatorcontrib><collection>CrossRef</collection><jtitle>International journal of mechanics and materials in design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Youye</au><au>Yin, Hanfeng</au><au>Fang, Hongbing</au><au>Wen, Guilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading</atitle><jtitle>International journal of mechanics and materials in design</jtitle><stitle>Int J Mech Mater Des</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>12</volume><issue>4</issue><spage>563</spage><epage>576</epage><pages>563-576</pages><issn>1569-1713</issn><eissn>1573-8841</eissn><abstract>Bio-inspired engineering design has drawn increased attention in recent years for the excellent structural and mechanical properties of the biological systems. In this study, the horsetail-bionic thin-walled structures (HBTSs) were investigated for their crashworthiness under axial dynamic loading. Six HBTSs with different cross section configurations (i.e., number of cells) were evaluated using nonlinear finite element (FE) simulations. To obtain the optimal design of the HBTSs, an ensemble metamodel-based multi-objective optimization method was employed to maximize the specific energy absorption while minimizing maximum impact force of the HBTSs. Using the ensemble metamodeling, FE simulations and the NSGA-II algorithm, the Pareto optimum designs of all six HBTSs were obtained and the HBTS with 16 cells were found to have the best crashworthiness. An optimum design of the HBTS with 16 cells was verified using FE simulation and found to have good agreement with simulation results.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10999-016-9341-6</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1569-1713
ispartof International journal of mechanics and materials in design, 2016-12, Vol.12 (4), p.563-576
issn 1569-1713
1573-8841
language eng
recordid cdi_proquest_journals_1880842125
source SpringerLink Journals - AutoHoldings
subjects Biological properties
Biomimetics
Bionics
Characterization and Evaluation of Materials
Classical Mechanics
Computer simulation
Crashworthiness
Design engineering
Energy absorption
Engineering
Engineering Design
Finite element method
Impact loads
Impact strength
Mechanical properties
Multiple objective analysis
Optimization
Pareto optimum
Simulation
Solid Mechanics
Thin wall structures
title Crashworthiness design of horsetail-bionic thin-walled structures under axial dynamic loading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T16%3A22%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Crashworthiness%20design%20of%20horsetail-bionic%20thin-walled%20structures%20under%20axial%20dynamic%20loading&rft.jtitle=International%20journal%20of%20mechanics%20and%20materials%20in%20design&rft.au=Xiao,%20Youye&rft.date=2016-12-01&rft.volume=12&rft.issue=4&rft.spage=563&rft.epage=576&rft.pages=563-576&rft.issn=1569-1713&rft.eissn=1573-8841&rft_id=info:doi/10.1007/s10999-016-9341-6&rft_dat=%3Cproquest_cross%3E1880842125%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880842125&rft_id=info:pmid/&rfr_iscdi=true