A continuous regularization method for a constrained pseudoinverse problem with additional restrictions on the input operators
A two-parameter continuous regularization method is considered for a constrained pseudoinverse problem with input operators satisfying a generalized complementarity condition. The method is based on the stabilization of the solutions of differential equations in a Hilbert space. Convergence conditio...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2016-11, Vol.37 (6), p.807-814 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 814 |
---|---|
container_issue | 6 |
container_start_page | 807 |
container_title | Lobachevskii journal of mathematics |
container_volume | 37 |
creator | Shafiev, R. A. Bondar, E. A. Yastrebova, I. Yu |
description | A two-parameter continuous regularization method is considered for a constrained pseudoinverse problem with input operators satisfying a generalized complementarity condition. The method is based on the stabilization of the solutions of differential equations in a Hilbert space. Convergence conditions refining those known previously are found. The main result is that the parameter functions are independent of each other. The stability of the method is established in the class of all possible constrained perturbations. A one-parameter continuous regularization method is studied for a special case of the problem with additional input operators. |
doi_str_mv | 10.1134/S1995080216060020 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880841209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880841209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-5bbf1364f7c446e81fc0ccc1a741a15e1d1a80872547b8faaa524d55c9a809733</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcB19W8NE3T5TD4BYILdV1e03Qmw0xTk1TRhb_dlHEhiKt8vHMul0fIObBLgFxcPUFVFUwxDpJJxjg7IDNQoLKqkvww3dM4m-bH5CSETSK4lHJGvhZUuz7afnRjoN6sxi16-4nRup7uTFy7lnbOU5ywED3a3rR0CGZsne3fjA-GDt41W7Oj7zauKbatnWTcprQkWD29Ak1xcW2o7YcxUjcYj9H5cEqOOtwGc_ZzzsnLzfXz8i57eLy9Xy4eMs2lilnRNB3kUnSlFkIaBZ1mWmvAUgBCYaAFVEyVvBBlozpELLhoi0JX6bsq83xOLva5qevrmHrVGzf6VDLUoJIpgLMqUbCntHcheNPVg7c79B81sHpac_1nzcnheycktl8Z_yv5X-kbrGKCAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880841209</pqid></control><display><type>article</type><title>A continuous regularization method for a constrained pseudoinverse problem with additional restrictions on the input operators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shafiev, R. A. ; Bondar, E. A. ; Yastrebova, I. Yu</creator><creatorcontrib>Shafiev, R. A. ; Bondar, E. A. ; Yastrebova, I. Yu</creatorcontrib><description>A two-parameter continuous regularization method is considered for a constrained pseudoinverse problem with input operators satisfying a generalized complementarity condition. The method is based on the stabilization of the solutions of differential equations in a Hilbert space. Convergence conditions refining those known previously are found. The main result is that the parameter functions are independent of each other. The stability of the method is established in the class of all possible constrained perturbations. A one-parameter continuous regularization method is studied for a special case of the problem with additional input operators.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080216060020</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Regularization ; Selected Articles from the Journal Uchenye Zapiski Kazanskogo Universiteta ; Seriya Fiziko-Matematicheskie Nauki</subject><ispartof>Lobachevskii journal of mathematics, 2016-11, Vol.37 (6), p.807-814</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-5bbf1364f7c446e81fc0ccc1a741a15e1d1a80872547b8faaa524d55c9a809733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080216060020$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080216060020$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Shafiev, R. A.</creatorcontrib><creatorcontrib>Bondar, E. A.</creatorcontrib><creatorcontrib>Yastrebova, I. Yu</creatorcontrib><title>A continuous regularization method for a constrained pseudoinverse problem with additional restrictions on the input operators</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>A two-parameter continuous regularization method is considered for a constrained pseudoinverse problem with input operators satisfying a generalized complementarity condition. The method is based on the stabilization of the solutions of differential equations in a Hilbert space. Convergence conditions refining those known previously are found. The main result is that the parameter functions are independent of each other. The stability of the method is established in the class of all possible constrained perturbations. A one-parameter continuous regularization method is studied for a special case of the problem with additional input operators.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regularization</subject><subject>Selected Articles from the Journal Uchenye Zapiski Kazanskogo Universiteta</subject><subject>Seriya Fiziko-Matematicheskie Nauki</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcB19W8NE3T5TD4BYILdV1e03Qmw0xTk1TRhb_dlHEhiKt8vHMul0fIObBLgFxcPUFVFUwxDpJJxjg7IDNQoLKqkvww3dM4m-bH5CSETSK4lHJGvhZUuz7afnRjoN6sxi16-4nRup7uTFy7lnbOU5ywED3a3rR0CGZsne3fjA-GDt41W7Oj7zauKbatnWTcprQkWD29Ak1xcW2o7YcxUjcYj9H5cEqOOtwGc_ZzzsnLzfXz8i57eLy9Xy4eMs2lilnRNB3kUnSlFkIaBZ1mWmvAUgBCYaAFVEyVvBBlozpELLhoi0JX6bsq83xOLva5qevrmHrVGzf6VDLUoJIpgLMqUbCntHcheNPVg7c79B81sHpac_1nzcnheycktl8Z_yv5X-kbrGKCAw</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Shafiev, R. A.</creator><creator>Bondar, E. A.</creator><creator>Yastrebova, I. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161101</creationdate><title>A continuous regularization method for a constrained pseudoinverse problem with additional restrictions on the input operators</title><author>Shafiev, R. A. ; Bondar, E. A. ; Yastrebova, I. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-5bbf1364f7c446e81fc0ccc1a741a15e1d1a80872547b8faaa524d55c9a809733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regularization</topic><topic>Selected Articles from the Journal Uchenye Zapiski Kazanskogo Universiteta</topic><topic>Seriya Fiziko-Matematicheskie Nauki</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafiev, R. A.</creatorcontrib><creatorcontrib>Bondar, E. A.</creatorcontrib><creatorcontrib>Yastrebova, I. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafiev, R. A.</au><au>Bondar, E. A.</au><au>Yastrebova, I. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A continuous regularization method for a constrained pseudoinverse problem with additional restrictions on the input operators</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>37</volume><issue>6</issue><spage>807</spage><epage>814</epage><pages>807-814</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>A two-parameter continuous regularization method is considered for a constrained pseudoinverse problem with input operators satisfying a generalized complementarity condition. The method is based on the stabilization of the solutions of differential equations in a Hilbert space. Convergence conditions refining those known previously are found. The main result is that the parameter functions are independent of each other. The stability of the method is established in the class of all possible constrained perturbations. A one-parameter continuous regularization method is studied for a special case of the problem with additional input operators.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080216060020</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2016-11, Vol.37 (6), p.807-814 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_1880841209 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Geometry Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes Regularization Selected Articles from the Journal Uchenye Zapiski Kazanskogo Universiteta Seriya Fiziko-Matematicheskie Nauki |
title | A continuous regularization method for a constrained pseudoinverse problem with additional restrictions on the input operators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A41%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20continuous%20regularization%20method%20for%20a%20constrained%20pseudoinverse%20problem%20with%20additional%20restrictions%20on%20the%20input%20operators&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Shafiev,%20R.%20A.&rft.date=2016-11-01&rft.volume=37&rft.issue=6&rft.spage=807&rft.epage=814&rft.pages=807-814&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080216060020&rft_dat=%3Cproquest_cross%3E1880841209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880841209&rft_id=info:pmid/&rfr_iscdi=true |