A continuous regularization method for a constrained pseudoinverse problem with additional restrictions on the input operators

A two-parameter continuous regularization method is considered for a constrained pseudoinverse problem with input operators satisfying a generalized complementarity condition. The method is based on the stabilization of the solutions of differential equations in a Hilbert space. Convergence conditio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2016-11, Vol.37 (6), p.807-814
Hauptverfasser: Shafiev, R. A., Bondar, E. A., Yastrebova, I. Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 814
container_issue 6
container_start_page 807
container_title Lobachevskii journal of mathematics
container_volume 37
creator Shafiev, R. A.
Bondar, E. A.
Yastrebova, I. Yu
description A two-parameter continuous regularization method is considered for a constrained pseudoinverse problem with input operators satisfying a generalized complementarity condition. The method is based on the stabilization of the solutions of differential equations in a Hilbert space. Convergence conditions refining those known previously are found. The main result is that the parameter functions are independent of each other. The stability of the method is established in the class of all possible constrained perturbations. A one-parameter continuous regularization method is studied for a special case of the problem with additional input operators.
doi_str_mv 10.1134/S1995080216060020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880841209</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880841209</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-5bbf1364f7c446e81fc0ccc1a741a15e1d1a80872547b8faaa524d55c9a809733</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcB19W8NE3T5TD4BYILdV1e03Qmw0xTk1TRhb_dlHEhiKt8vHMul0fIObBLgFxcPUFVFUwxDpJJxjg7IDNQoLKqkvww3dM4m-bH5CSETSK4lHJGvhZUuz7afnRjoN6sxi16-4nRup7uTFy7lnbOU5ywED3a3rR0CGZsne3fjA-GDt41W7Oj7zauKbatnWTcprQkWD29Ak1xcW2o7YcxUjcYj9H5cEqOOtwGc_ZzzsnLzfXz8i57eLy9Xy4eMs2lilnRNB3kUnSlFkIaBZ1mWmvAUgBCYaAFVEyVvBBlozpELLhoi0JX6bsq83xOLva5qevrmHrVGzf6VDLUoJIpgLMqUbCntHcheNPVg7c79B81sHpac_1nzcnheycktl8Z_yv5X-kbrGKCAw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880841209</pqid></control><display><type>article</type><title>A continuous regularization method for a constrained pseudoinverse problem with additional restrictions on the input operators</title><source>SpringerLink Journals - AutoHoldings</source><creator>Shafiev, R. A. ; Bondar, E. A. ; Yastrebova, I. Yu</creator><creatorcontrib>Shafiev, R. A. ; Bondar, E. A. ; Yastrebova, I. Yu</creatorcontrib><description>A two-parameter continuous regularization method is considered for a constrained pseudoinverse problem with input operators satisfying a generalized complementarity condition. The method is based on the stabilization of the solutions of differential equations in a Hilbert space. Convergence conditions refining those known previously are found. The main result is that the parameter functions are independent of each other. The stability of the method is established in the class of all possible constrained perturbations. A one-parameter continuous regularization method is studied for a special case of the problem with additional input operators.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080216060020</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Geometry ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Regularization ; Selected Articles from the Journal Uchenye Zapiski Kazanskogo Universiteta ; Seriya Fiziko-Matematicheskie Nauki</subject><ispartof>Lobachevskii journal of mathematics, 2016-11, Vol.37 (6), p.807-814</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-5bbf1364f7c446e81fc0ccc1a741a15e1d1a80872547b8faaa524d55c9a809733</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080216060020$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080216060020$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51297</link.rule.ids></links><search><creatorcontrib>Shafiev, R. A.</creatorcontrib><creatorcontrib>Bondar, E. A.</creatorcontrib><creatorcontrib>Yastrebova, I. Yu</creatorcontrib><title>A continuous regularization method for a constrained pseudoinverse problem with additional restrictions on the input operators</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>A two-parameter continuous regularization method is considered for a constrained pseudoinverse problem with input operators satisfying a generalized complementarity condition. The method is based on the stabilization of the solutions of differential equations in a Hilbert space. Convergence conditions refining those known previously are found. The main result is that the parameter functions are independent of each other. The stability of the method is established in the class of all possible constrained perturbations. A one-parameter continuous regularization method is studied for a special case of the problem with additional input operators.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Geometry</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Regularization</subject><subject>Selected Articles from the Journal Uchenye Zapiski Kazanskogo Universiteta</subject><subject>Seriya Fiziko-Matematicheskie Nauki</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcB19W8NE3T5TD4BYILdV1e03Qmw0xTk1TRhb_dlHEhiKt8vHMul0fIObBLgFxcPUFVFUwxDpJJxjg7IDNQoLKqkvww3dM4m-bH5CSETSK4lHJGvhZUuz7afnRjoN6sxi16-4nRup7uTFy7lnbOU5ywED3a3rR0CGZsne3fjA-GDt41W7Oj7zauKbatnWTcprQkWD29Ak1xcW2o7YcxUjcYj9H5cEqOOtwGc_ZzzsnLzfXz8i57eLy9Xy4eMs2lilnRNB3kUnSlFkIaBZ1mWmvAUgBCYaAFVEyVvBBlozpELLhoi0JX6bsq83xOLva5qevrmHrVGzf6VDLUoJIpgLMqUbCntHcheNPVg7c79B81sHpac_1nzcnheycktl8Z_yv5X-kbrGKCAw</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Shafiev, R. A.</creator><creator>Bondar, E. A.</creator><creator>Yastrebova, I. Yu</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161101</creationdate><title>A continuous regularization method for a constrained pseudoinverse problem with additional restrictions on the input operators</title><author>Shafiev, R. A. ; Bondar, E. A. ; Yastrebova, I. Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-5bbf1364f7c446e81fc0ccc1a741a15e1d1a80872547b8faaa524d55c9a809733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Geometry</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Regularization</topic><topic>Selected Articles from the Journal Uchenye Zapiski Kazanskogo Universiteta</topic><topic>Seriya Fiziko-Matematicheskie Nauki</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shafiev, R. A.</creatorcontrib><creatorcontrib>Bondar, E. A.</creatorcontrib><creatorcontrib>Yastrebova, I. Yu</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shafiev, R. A.</au><au>Bondar, E. A.</au><au>Yastrebova, I. Yu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A continuous regularization method for a constrained pseudoinverse problem with additional restrictions on the input operators</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>37</volume><issue>6</issue><spage>807</spage><epage>814</epage><pages>807-814</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>A two-parameter continuous regularization method is considered for a constrained pseudoinverse problem with input operators satisfying a generalized complementarity condition. The method is based on the stabilization of the solutions of differential equations in a Hilbert space. Convergence conditions refining those known previously are found. The main result is that the parameter functions are independent of each other. The stability of the method is established in the class of all possible constrained perturbations. A one-parameter continuous regularization method is studied for a special case of the problem with additional input operators.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080216060020</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2016-11, Vol.37 (6), p.807-814
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_1880841209
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Geometry
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Regularization
Selected Articles from the Journal Uchenye Zapiski Kazanskogo Universiteta
Seriya Fiziko-Matematicheskie Nauki
title A continuous regularization method for a constrained pseudoinverse problem with additional restrictions on the input operators
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A41%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20continuous%20regularization%20method%20for%20a%20constrained%20pseudoinverse%20problem%20with%20additional%20restrictions%20on%20the%20input%20operators&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Shafiev,%20R.%20A.&rft.date=2016-11-01&rft.volume=37&rft.issue=6&rft.spage=807&rft.epage=814&rft.pages=807-814&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080216060020&rft_dat=%3Cproquest_cross%3E1880841209%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880841209&rft_id=info:pmid/&rfr_iscdi=true