A Note on the Degree of Approximation by Matrix Means in the Generalized Hölder Metric

The aim of the paper is to determine the degree of approximation of functions by matrix means of their Fourier series in a new space of functions introduced by Das, Nath, and Ray. In particular, we extend some results of Leindler and some other results by weakening the monotonicity conditions in the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ukrainian mathematical journal 2016-09, Vol.68 (4), p.545-556
1. Verfasser: Deger, U
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 556
container_issue 4
container_start_page 545
container_title Ukrainian mathematical journal
container_volume 68
creator Deger, U
description The aim of the paper is to determine the degree of approximation of functions by matrix means of their Fourier series in a new space of functions introduced by Das, Nath, and Ray. In particular, we extend some results of Leindler and some other results by weakening the monotonicity conditions in the results obtained by Singh and Sonker for some classes of numerical sequences introduced by Mohapatra and Szal and present new results by using matrix means.
doi_str_mv 10.1007/s11253-016-1240-3
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880836721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499343161</galeid><sourcerecordid>A499343161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-48051ba1d8938c6ca4a7d59cd69d7212cda1fe9ed6ce269246328654a0ff0d2e3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqVwAHaWWLv4J3biZVWgRWphA2JpufakpEqTYqdSy8G4ABfDVViwQV5YHr83M_oQumZ0xCjNbyNjXApCmSKMZ5SIEzRgMhdEi1ydogGlGSNSa3mOLmJcU5qsIh-gtzF-ajvAbYO7d8B3sAqQXiUeb7eh3Vcb21Xpb3nAC9uFao8XYJuIqx6fQgPB1tUneDz7_qo9hAQkzl2is9LWEa5-7yF6fbh_mczI_Hn6OBnPiRNSdiQrqGRLy3yhReGUs5nNvdTOK-1zzrjzlpWgwSsHXGmeKcELJTNLy5J6DmKIbvq-aduPHcTOrNtdaNJIw4qCFkKlNoka9dTK1mCqpmy7YF06HjaVaxsoq1QfZ1qLTDB1FFgvuNDGGKA025CyCAfDqDkGbvrATQrcHAM3Ijm8d2JimxWEP6v8K_0Ar0-CGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880836721</pqid></control><display><type>article</type><title>A Note on the Degree of Approximation by Matrix Means in the Generalized Hölder Metric</title><source>SpringerLink Journals - AutoHoldings</source><creator>Deger, U</creator><creatorcontrib>Deger, U</creatorcontrib><description>The aim of the paper is to determine the degree of approximation of functions by matrix means of their Fourier series in a new space of functions introduced by Das, Nath, and Ray. In particular, we extend some results of Leindler and some other results by weakening the monotonicity conditions in the results obtained by Singh and Sonker for some classes of numerical sequences introduced by Mohapatra and Szal and present new results by using matrix means.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-016-1240-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Fourier series ; Geometry ; Mathematics ; Mathematics and Statistics ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2016-09, Vol.68 (4), p.545-556</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-48051ba1d8938c6ca4a7d59cd69d7212cda1fe9ed6ce269246328654a0ff0d2e3</citedby><cites>FETCH-LOGICAL-c355t-48051ba1d8938c6ca4a7d59cd69d7212cda1fe9ed6ce269246328654a0ff0d2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-016-1240-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-016-1240-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Deger, U</creatorcontrib><title>A Note on the Degree of Approximation by Matrix Means in the Generalized Hölder Metric</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>The aim of the paper is to determine the degree of approximation of functions by matrix means of their Fourier series in a new space of functions introduced by Das, Nath, and Ray. In particular, we extend some results of Leindler and some other results by weakening the monotonicity conditions in the results obtained by Singh and Sonker for some classes of numerical sequences introduced by Mohapatra and Szal and present new results by using matrix means.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Fourier series</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqVwAHaWWLv4J3biZVWgRWphA2JpufakpEqTYqdSy8G4ABfDVViwQV5YHr83M_oQumZ0xCjNbyNjXApCmSKMZ5SIEzRgMhdEi1ydogGlGSNSa3mOLmJcU5qsIh-gtzF-ajvAbYO7d8B3sAqQXiUeb7eh3Vcb21Xpb3nAC9uFao8XYJuIqx6fQgPB1tUneDz7_qo9hAQkzl2is9LWEa5-7yF6fbh_mczI_Hn6OBnPiRNSdiQrqGRLy3yhReGUs5nNvdTOK-1zzrjzlpWgwSsHXGmeKcELJTNLy5J6DmKIbvq-aduPHcTOrNtdaNJIw4qCFkKlNoka9dTK1mCqpmy7YF06HjaVaxsoq1QfZ1qLTDB1FFgvuNDGGKA025CyCAfDqDkGbvrATQrcHAM3Ijm8d2JimxWEP6v8K_0Ar0-CGQ</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Deger, U</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>A Note on the Degree of Approximation by Matrix Means in the Generalized Hölder Metric</title><author>Deger, U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-48051ba1d8938c6ca4a7d59cd69d7212cda1fe9ed6ce269246328654a0ff0d2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Fourier series</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deger, U</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deger, U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on the Degree of Approximation by Matrix Means in the Generalized Hölder Metric</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>68</volume><issue>4</issue><spage>545</spage><epage>556</epage><pages>545-556</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>The aim of the paper is to determine the degree of approximation of functions by matrix means of their Fourier series in a new space of functions introduced by Das, Nath, and Ray. In particular, we extend some results of Leindler and some other results by weakening the monotonicity conditions in the results obtained by Singh and Sonker for some classes of numerical sequences introduced by Mohapatra and Szal and present new results by using matrix means.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-016-1240-3</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0041-5995
ispartof Ukrainian mathematical journal, 2016-09, Vol.68 (4), p.545-556
issn 0041-5995
1573-9376
language eng
recordid cdi_proquest_journals_1880836721
source SpringerLink Journals - AutoHoldings
subjects Algebra
Analysis
Applications of Mathematics
Fourier series
Geometry
Mathematics
Mathematics and Statistics
Statistics
title A Note on the Degree of Approximation by Matrix Means in the Generalized Hölder Metric
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20the%20Degree%20of%20Approximation%20by%20Matrix%20Means%20in%20the%20Generalized%20H%C3%B6lder%20Metric&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Deger,%20U&rft.date=2016-09-01&rft.volume=68&rft.issue=4&rft.spage=545&rft.epage=556&rft.pages=545-556&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-016-1240-3&rft_dat=%3Cgale_proqu%3EA499343161%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880836721&rft_id=info:pmid/&rft_galeid=A499343161&rfr_iscdi=true