A Note on the Degree of Approximation by Matrix Means in the Generalized Hölder Metric
The aim of the paper is to determine the degree of approximation of functions by matrix means of their Fourier series in a new space of functions introduced by Das, Nath, and Ray. In particular, we extend some results of Leindler and some other results by weakening the monotonicity conditions in the...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2016-09, Vol.68 (4), p.545-556 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 556 |
---|---|
container_issue | 4 |
container_start_page | 545 |
container_title | Ukrainian mathematical journal |
container_volume | 68 |
creator | Deger, U |
description | The aim of the paper is to determine the degree of approximation of functions by matrix means of their Fourier series in a new space of functions introduced by Das, Nath, and Ray. In particular, we extend some results of Leindler and some other results by weakening the monotonicity conditions in the results obtained by Singh and Sonker for some classes of numerical sequences introduced by Mohapatra and Szal and present new results by using matrix means. |
doi_str_mv | 10.1007/s11253-016-1240-3 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880836721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A499343161</galeid><sourcerecordid>A499343161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-48051ba1d8938c6ca4a7d59cd69d7212cda1fe9ed6ce269246328654a0ff0d2e3</originalsourceid><addsrcrecordid>eNp1kE1OwzAQRi0EEqVwAHaWWLv4J3biZVWgRWphA2JpufakpEqTYqdSy8G4ABfDVViwQV5YHr83M_oQumZ0xCjNbyNjXApCmSKMZ5SIEzRgMhdEi1ydogGlGSNSa3mOLmJcU5qsIh-gtzF-ajvAbYO7d8B3sAqQXiUeb7eh3Vcb21Xpb3nAC9uFao8XYJuIqx6fQgPB1tUneDz7_qo9hAQkzl2is9LWEa5-7yF6fbh_mczI_Hn6OBnPiRNSdiQrqGRLy3yhReGUs5nNvdTOK-1zzrjzlpWgwSsHXGmeKcELJTNLy5J6DmKIbvq-aduPHcTOrNtdaNJIw4qCFkKlNoka9dTK1mCqpmy7YF06HjaVaxsoq1QfZ1qLTDB1FFgvuNDGGKA025CyCAfDqDkGbvrATQrcHAM3Ijm8d2JimxWEP6v8K_0Ar0-CGQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880836721</pqid></control><display><type>article</type><title>A Note on the Degree of Approximation by Matrix Means in the Generalized Hölder Metric</title><source>SpringerLink Journals - AutoHoldings</source><creator>Deger, U</creator><creatorcontrib>Deger, U</creatorcontrib><description>The aim of the paper is to determine the degree of approximation of functions by matrix means of their Fourier series in a new space of functions introduced by Das, Nath, and Ray. In particular, we extend some results of Leindler and some other results by weakening the monotonicity conditions in the results obtained by Singh and Sonker for some classes of numerical sequences introduced by Mohapatra and Szal and present new results by using matrix means.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-016-1240-3</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Fourier series ; Geometry ; Mathematics ; Mathematics and Statistics ; Statistics</subject><ispartof>Ukrainian mathematical journal, 2016-09, Vol.68 (4), p.545-556</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-48051ba1d8938c6ca4a7d59cd69d7212cda1fe9ed6ce269246328654a0ff0d2e3</citedby><cites>FETCH-LOGICAL-c355t-48051ba1d8938c6ca4a7d59cd69d7212cda1fe9ed6ce269246328654a0ff0d2e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-016-1240-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-016-1240-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Deger, U</creatorcontrib><title>A Note on the Degree of Approximation by Matrix Means in the Generalized Hölder Metric</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>The aim of the paper is to determine the degree of approximation of functions by matrix means of their Fourier series in a new space of functions introduced by Das, Nath, and Ray. In particular, we extend some results of Leindler and some other results by weakening the monotonicity conditions in the results obtained by Singh and Sonker for some classes of numerical sequences introduced by Mohapatra and Szal and present new results by using matrix means.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Fourier series</subject><subject>Geometry</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Statistics</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQRi0EEqVwAHaWWLv4J3biZVWgRWphA2JpufakpEqTYqdSy8G4ABfDVViwQV5YHr83M_oQumZ0xCjNbyNjXApCmSKMZ5SIEzRgMhdEi1ydogGlGSNSa3mOLmJcU5qsIh-gtzF-ajvAbYO7d8B3sAqQXiUeb7eh3Vcb21Xpb3nAC9uFao8XYJuIqx6fQgPB1tUneDz7_qo9hAQkzl2is9LWEa5-7yF6fbh_mczI_Hn6OBnPiRNSdiQrqGRLy3yhReGUs5nNvdTOK-1zzrjzlpWgwSsHXGmeKcELJTNLy5J6DmKIbvq-aduPHcTOrNtdaNJIw4qCFkKlNoka9dTK1mCqpmy7YF06HjaVaxsoq1QfZ1qLTDB1FFgvuNDGGKA025CyCAfDqDkGbvrATQrcHAM3Ijm8d2JimxWEP6v8K_0Ar0-CGQ</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Deger, U</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20160901</creationdate><title>A Note on the Degree of Approximation by Matrix Means in the Generalized Hölder Metric</title><author>Deger, U</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-48051ba1d8938c6ca4a7d59cd69d7212cda1fe9ed6ce269246328654a0ff0d2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Fourier series</topic><topic>Geometry</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deger, U</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deger, U</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Note on the Degree of Approximation by Matrix Means in the Generalized Hölder Metric</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2016-09-01</date><risdate>2016</risdate><volume>68</volume><issue>4</issue><spage>545</spage><epage>556</epage><pages>545-556</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>The aim of the paper is to determine the degree of approximation of functions by matrix means of their Fourier series in a new space of functions introduced by Das, Nath, and Ray. In particular, we extend some results of Leindler and some other results by weakening the monotonicity conditions in the results obtained by Singh and Sonker for some classes of numerical sequences introduced by Mohapatra and Szal and present new results by using matrix means.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-016-1240-3</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-5995 |
ispartof | Ukrainian mathematical journal, 2016-09, Vol.68 (4), p.545-556 |
issn | 0041-5995 1573-9376 |
language | eng |
recordid | cdi_proquest_journals_1880836721 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algebra Analysis Applications of Mathematics Fourier series Geometry Mathematics Mathematics and Statistics Statistics |
title | A Note on the Degree of Approximation by Matrix Means in the Generalized Hölder Metric |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A56%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Note%20on%20the%20Degree%20of%20Approximation%20by%20Matrix%20Means%20in%20the%20Generalized%20H%C3%B6lder%20Metric&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Deger,%20U&rft.date=2016-09-01&rft.volume=68&rft.issue=4&rft.spage=545&rft.epage=556&rft.pages=545-556&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-016-1240-3&rft_dat=%3Cgale_proqu%3EA499343161%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880836721&rft_id=info:pmid/&rft_galeid=A499343161&rfr_iscdi=true |