Axisymmetric Problem of Thermoplasticity for a Piecewise Homogeneous Ring
We develop an analytic approach to the determination and analysis of axisymmetric thermoplastic states in piecewise homogeneous rings subjected to nonstationary heating. The numerical analyses of the thermoplastic states of two- and three-layer annular plates are performed. An example of the problem...
Gespeichert in:
Veröffentlicht in: | Journal of mathematical sciences (New York, N.Y.) N.Y.), 2017-01, Vol.220 (2), p.193-203 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | 2 |
container_start_page | 193 |
container_title | Journal of mathematical sciences (New York, N.Y.) |
container_volume | 220 |
creator | Maksymovych, V. M. Solyar, T. Ya |
description | We develop an analytic approach to the determination and analysis of axisymmetric thermoplastic states in piecewise homogeneous rings subjected to nonstationary heating. The numerical analyses of the thermoplastic states of two- and three-layer annular plates are performed. An example of the problem of determination of compressive residual stresses in a plate subjected to local heating by a normal circular heat source illustrates the efficiency of the proposed approach in the case where the yield strength is a function of temperature. |
doi_str_mv | 10.1007/s10958-016-3176-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880832947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A501486167</galeid><sourcerecordid>A501486167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3224-ef6194e2eb3e94648a7fbafa681a5e4674139c0298c0ba16b10d5b5df94b23e73</originalsourceid><addsrcrecordid>eNp1kctKxDAUhosoOF4ewF3BlYto0qRJuhzEy4CgeFmHNHNSI20zJh2ceXtTxsUMjJxFDuH7cjj5s-yC4GuCsbiJBFelRJhwRIngiB1kE1IKiqSoysPUY1EgSgU7zk5i_MLJ4ZJOstl05eK662AIzuQvwdctdLm3-fsnhM4vWh0HZ9ywzq0Puc5fHBj4cRHyR9_5Bnrwy5i_ur45y46sbiOc_52n2cf93fvtI3p6fpjdTp-QoUXBEFhOKgYF1BQqxpnUwtbaai6JLoFxwQitDC4qaXCtCa8Jnpd1ObcVqwsKgp5ml5t3F8F_LyEO6ssvQ59GKiIllrSo2BbV6BaU660fgjadi0ZNS0yY5ISPFNpDjVsF3foerEvXO_z1Hj7VHDpn9gpXO0JiBlgNjV7GqGZvr7ss2bAm-BgDWLUIrtNhrQhWY8hqE7JKIasxZMWSU2ycmNi-gbD1Gf9KvwWYppk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880832947</pqid></control><display><type>article</type><title>Axisymmetric Problem of Thermoplasticity for a Piecewise Homogeneous Ring</title><source>Springer Nature - Complete Springer Journals</source><creator>Maksymovych, V. M. ; Solyar, T. Ya</creator><creatorcontrib>Maksymovych, V. M. ; Solyar, T. Ya</creatorcontrib><description>We develop an analytic approach to the determination and analysis of axisymmetric thermoplastic states in piecewise homogeneous rings subjected to nonstationary heating. The numerical analyses of the thermoplastic states of two- and three-layer annular plates are performed. An example of the problem of determination of compressive residual stresses in a plate subjected to local heating by a normal circular heat source illustrates the efficiency of the proposed approach in the case where the yield strength is a function of temperature.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-016-3176-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Thermoplastics ; Yield strength</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2017-01, Vol.220 (2), p.193-203</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3224-ef6194e2eb3e94648a7fbafa681a5e4674139c0298c0ba16b10d5b5df94b23e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-016-3176-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-016-3176-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Maksymovych, V. M.</creatorcontrib><creatorcontrib>Solyar, T. Ya</creatorcontrib><title>Axisymmetric Problem of Thermoplasticity for a Piecewise Homogeneous Ring</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We develop an analytic approach to the determination and analysis of axisymmetric thermoplastic states in piecewise homogeneous rings subjected to nonstationary heating. The numerical analyses of the thermoplastic states of two- and three-layer annular plates are performed. An example of the problem of determination of compressive residual stresses in a plate subjected to local heating by a normal circular heat source illustrates the efficiency of the proposed approach in the case where the yield strength is a function of temperature.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Thermoplastics</subject><subject>Yield strength</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kctKxDAUhosoOF4ewF3BlYto0qRJuhzEy4CgeFmHNHNSI20zJh2ceXtTxsUMjJxFDuH7cjj5s-yC4GuCsbiJBFelRJhwRIngiB1kE1IKiqSoysPUY1EgSgU7zk5i_MLJ4ZJOstl05eK662AIzuQvwdctdLm3-fsnhM4vWh0HZ9ywzq0Puc5fHBj4cRHyR9_5Bnrwy5i_ur45y46sbiOc_52n2cf93fvtI3p6fpjdTp-QoUXBEFhOKgYF1BQqxpnUwtbaai6JLoFxwQitDC4qaXCtCa8Jnpd1ObcVqwsKgp5ml5t3F8F_LyEO6ssvQ59GKiIllrSo2BbV6BaU660fgjadi0ZNS0yY5ISPFNpDjVsF3foerEvXO_z1Hj7VHDpn9gpXO0JiBlgNjV7GqGZvr7ss2bAm-BgDWLUIrtNhrQhWY8hqE7JKIasxZMWSU2ycmNi-gbD1Gf9KvwWYppk</recordid><startdate>20170102</startdate><enddate>20170102</enddate><creator>Maksymovych, V. M.</creator><creator>Solyar, T. Ya</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170102</creationdate><title>Axisymmetric Problem of Thermoplasticity for a Piecewise Homogeneous Ring</title><author>Maksymovych, V. M. ; Solyar, T. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3224-ef6194e2eb3e94648a7fbafa681a5e4674139c0298c0ba16b10d5b5df94b23e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Thermoplastics</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maksymovych, V. M.</creatorcontrib><creatorcontrib>Solyar, T. Ya</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maksymovych, V. M.</au><au>Solyar, T. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axisymmetric Problem of Thermoplasticity for a Piecewise Homogeneous Ring</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2017-01-02</date><risdate>2017</risdate><volume>220</volume><issue>2</issue><spage>193</spage><epage>203</epage><pages>193-203</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We develop an analytic approach to the determination and analysis of axisymmetric thermoplastic states in piecewise homogeneous rings subjected to nonstationary heating. The numerical analyses of the thermoplastic states of two- and three-layer annular plates are performed. An example of the problem of determination of compressive residual stresses in a plate subjected to local heating by a normal circular heat source illustrates the efficiency of the proposed approach in the case where the yield strength is a function of temperature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-016-3176-4</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1072-3374 |
ispartof | Journal of mathematical sciences (New York, N.Y.), 2017-01, Vol.220 (2), p.193-203 |
issn | 1072-3374 1573-8795 |
language | eng |
recordid | cdi_proquest_journals_1880832947 |
source | Springer Nature - Complete Springer Journals |
subjects | Analysis Mathematics Mathematics and Statistics Numerical analysis Thermoplastics Yield strength |
title | Axisymmetric Problem of Thermoplasticity for a Piecewise Homogeneous Ring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axisymmetric%20Problem%20of%20Thermoplasticity%20for%20a%20Piecewise%20Homogeneous%20Ring&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Maksymovych,%20V.%20M.&rft.date=2017-01-02&rft.volume=220&rft.issue=2&rft.spage=193&rft.epage=203&rft.pages=193-203&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-016-3176-4&rft_dat=%3Cgale_proqu%3EA501486167%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880832947&rft_id=info:pmid/&rft_galeid=A501486167&rfr_iscdi=true |