Axisymmetric Problem of Thermoplasticity for a Piecewise Homogeneous Ring

We develop an analytic approach to the determination and analysis of axisymmetric thermoplastic states in piecewise homogeneous rings subjected to nonstationary heating. The numerical analyses of the thermoplastic states of two- and three-layer annular plates are performed. An example of the problem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical sciences (New York, N.Y.) N.Y.), 2017-01, Vol.220 (2), p.193-203
Hauptverfasser: Maksymovych, V. M., Solyar, T. Ya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue 2
container_start_page 193
container_title Journal of mathematical sciences (New York, N.Y.)
container_volume 220
creator Maksymovych, V. M.
Solyar, T. Ya
description We develop an analytic approach to the determination and analysis of axisymmetric thermoplastic states in piecewise homogeneous rings subjected to nonstationary heating. The numerical analyses of the thermoplastic states of two- and three-layer annular plates are performed. An example of the problem of determination of compressive residual stresses in a plate subjected to local heating by a normal circular heat source illustrates the efficiency of the proposed approach in the case where the yield strength is a function of temperature.
doi_str_mv 10.1007/s10958-016-3176-4
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880832947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A501486167</galeid><sourcerecordid>A501486167</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3224-ef6194e2eb3e94648a7fbafa681a5e4674139c0298c0ba16b10d5b5df94b23e73</originalsourceid><addsrcrecordid>eNp1kctKxDAUhosoOF4ewF3BlYto0qRJuhzEy4CgeFmHNHNSI20zJh2ceXtTxsUMjJxFDuH7cjj5s-yC4GuCsbiJBFelRJhwRIngiB1kE1IKiqSoysPUY1EgSgU7zk5i_MLJ4ZJOstl05eK662AIzuQvwdctdLm3-fsnhM4vWh0HZ9ywzq0Puc5fHBj4cRHyR9_5Bnrwy5i_ur45y46sbiOc_52n2cf93fvtI3p6fpjdTp-QoUXBEFhOKgYF1BQqxpnUwtbaai6JLoFxwQitDC4qaXCtCa8Jnpd1ObcVqwsKgp5ml5t3F8F_LyEO6ssvQ59GKiIllrSo2BbV6BaU660fgjadi0ZNS0yY5ISPFNpDjVsF3foerEvXO_z1Hj7VHDpn9gpXO0JiBlgNjV7GqGZvr7ss2bAm-BgDWLUIrtNhrQhWY8hqE7JKIasxZMWSU2ycmNi-gbD1Gf9KvwWYppk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880832947</pqid></control><display><type>article</type><title>Axisymmetric Problem of Thermoplasticity for a Piecewise Homogeneous Ring</title><source>Springer Nature - Complete Springer Journals</source><creator>Maksymovych, V. M. ; Solyar, T. Ya</creator><creatorcontrib>Maksymovych, V. M. ; Solyar, T. Ya</creatorcontrib><description>We develop an analytic approach to the determination and analysis of axisymmetric thermoplastic states in piecewise homogeneous rings subjected to nonstationary heating. The numerical analyses of the thermoplastic states of two- and three-layer annular plates are performed. An example of the problem of determination of compressive residual stresses in a plate subjected to local heating by a normal circular heat source illustrates the efficiency of the proposed approach in the case where the yield strength is a function of temperature.</description><identifier>ISSN: 1072-3374</identifier><identifier>EISSN: 1573-8795</identifier><identifier>DOI: 10.1007/s10958-016-3176-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Thermoplastics ; Yield strength</subject><ispartof>Journal of mathematical sciences (New York, N.Y.), 2017-01, Vol.220 (2), p.193-203</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c3224-ef6194e2eb3e94648a7fbafa681a5e4674139c0298c0ba16b10d5b5df94b23e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10958-016-3176-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10958-016-3176-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Maksymovych, V. M.</creatorcontrib><creatorcontrib>Solyar, T. Ya</creatorcontrib><title>Axisymmetric Problem of Thermoplasticity for a Piecewise Homogeneous Ring</title><title>Journal of mathematical sciences (New York, N.Y.)</title><addtitle>J Math Sci</addtitle><description>We develop an analytic approach to the determination and analysis of axisymmetric thermoplastic states in piecewise homogeneous rings subjected to nonstationary heating. The numerical analyses of the thermoplastic states of two- and three-layer annular plates are performed. An example of the problem of determination of compressive residual stresses in a plate subjected to local heating by a normal circular heat source illustrates the efficiency of the proposed approach in the case where the yield strength is a function of temperature.</description><subject>Analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Thermoplastics</subject><subject>Yield strength</subject><issn>1072-3374</issn><issn>1573-8795</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kctKxDAUhosoOF4ewF3BlYto0qRJuhzEy4CgeFmHNHNSI20zJh2ceXtTxsUMjJxFDuH7cjj5s-yC4GuCsbiJBFelRJhwRIngiB1kE1IKiqSoysPUY1EgSgU7zk5i_MLJ4ZJOstl05eK662AIzuQvwdctdLm3-fsnhM4vWh0HZ9ywzq0Puc5fHBj4cRHyR9_5Bnrwy5i_ur45y46sbiOc_52n2cf93fvtI3p6fpjdTp-QoUXBEFhOKgYF1BQqxpnUwtbaai6JLoFxwQitDC4qaXCtCa8Jnpd1ObcVqwsKgp5ml5t3F8F_LyEO6ssvQ59GKiIllrSo2BbV6BaU660fgjadi0ZNS0yY5ISPFNpDjVsF3foerEvXO_z1Hj7VHDpn9gpXO0JiBlgNjV7GqGZvr7ss2bAm-BgDWLUIrtNhrQhWY8hqE7JKIasxZMWSU2ycmNi-gbD1Gf9KvwWYppk</recordid><startdate>20170102</startdate><enddate>20170102</enddate><creator>Maksymovych, V. M.</creator><creator>Solyar, T. Ya</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20170102</creationdate><title>Axisymmetric Problem of Thermoplasticity for a Piecewise Homogeneous Ring</title><author>Maksymovych, V. M. ; Solyar, T. Ya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3224-ef6194e2eb3e94648a7fbafa681a5e4674139c0298c0ba16b10d5b5df94b23e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Thermoplastics</topic><topic>Yield strength</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maksymovych, V. M.</creatorcontrib><creatorcontrib>Solyar, T. Ya</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maksymovych, V. M.</au><au>Solyar, T. Ya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Axisymmetric Problem of Thermoplasticity for a Piecewise Homogeneous Ring</atitle><jtitle>Journal of mathematical sciences (New York, N.Y.)</jtitle><stitle>J Math Sci</stitle><date>2017-01-02</date><risdate>2017</risdate><volume>220</volume><issue>2</issue><spage>193</spage><epage>203</epage><pages>193-203</pages><issn>1072-3374</issn><eissn>1573-8795</eissn><abstract>We develop an analytic approach to the determination and analysis of axisymmetric thermoplastic states in piecewise homogeneous rings subjected to nonstationary heating. The numerical analyses of the thermoplastic states of two- and three-layer annular plates are performed. An example of the problem of determination of compressive residual stresses in a plate subjected to local heating by a normal circular heat source illustrates the efficiency of the proposed approach in the case where the yield strength is a function of temperature.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10958-016-3176-4</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1072-3374
ispartof Journal of mathematical sciences (New York, N.Y.), 2017-01, Vol.220 (2), p.193-203
issn 1072-3374
1573-8795
language eng
recordid cdi_proquest_journals_1880832947
source Springer Nature - Complete Springer Journals
subjects Analysis
Mathematics
Mathematics and Statistics
Numerical analysis
Thermoplastics
Yield strength
title Axisymmetric Problem of Thermoplasticity for a Piecewise Homogeneous Ring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T19%3A35%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Axisymmetric%20Problem%20of%20Thermoplasticity%20for%20a%20Piecewise%20Homogeneous%20Ring&rft.jtitle=Journal%20of%20mathematical%20sciences%20(New%20York,%20N.Y.)&rft.au=Maksymovych,%20V.%20M.&rft.date=2017-01-02&rft.volume=220&rft.issue=2&rft.spage=193&rft.epage=203&rft.pages=193-203&rft.issn=1072-3374&rft.eissn=1573-8795&rft_id=info:doi/10.1007/s10958-016-3176-4&rft_dat=%3Cgale_proqu%3EA501486167%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880832947&rft_id=info:pmid/&rft_galeid=A501486167&rfr_iscdi=true