Algebraic and geometric structures of analytic partial differential equations
We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinit...
Gespeichert in:
Veröffentlicht in: | Theoretical and mathematical physics 2016-11, Vol.189 (2), p.1592-1608 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1608 |
---|---|
container_issue | 2 |
container_start_page | 1592 |
container_title | Theoretical and mathematical physics |
container_volume | 189 |
creator | Kaptsov, O. V. |
description | We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds. |
doi_str_mv | 10.1134/S0040577916110052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880824503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880824503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c311t-4459aed80ba5ccda6f5b934a2232db63be25852adb68165baa5457cc21db21ff3</originalsourceid><addsrcrecordid>eNp1UD1PwzAQtRBIlMIPYIvEHPD5I3HGqgKKVMQAzNHZsatUadLaztB_j0sYkBDT3bv3odMj5BboPQAXD--UCirLsoICgFLJzsgMZMnzinN-TmYnOj_xl-QqhC2lSaRgRl4X3cZqj63JsG-yjR12NvqEQvSjiaO3IRtc4rA7xnTeo48tdlnTOme97b-BPYwY26EP1-TCYRfszc-ck8-nx4_lKl-_Pb8sF-vccICYCyErtI2iGqUxDRZO6ooLZIyzRhdcWyaVZJh2BYXUiFLI0hgGjWbgHJ-Tuyl374fDaEOst8Po04-hBqWoYkJSnlQwqYwfQvDW1Xvf7tAfa6D1qbX6T2vJwyZPSNp-Y_2v5H9NX0L0bzc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880824503</pqid></control><display><type>article</type><title>Algebraic and geometric structures of analytic partial differential equations</title><source>Springer Nature - Complete Springer Journals</source><creator>Kaptsov, O. V.</creator><creatorcontrib>Kaptsov, O. V.</creatorcontrib><description>We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.</description><identifier>ISSN: 0040-5779</identifier><identifier>EISSN: 1573-9333</identifier><identifier>DOI: 10.1134/S0040577916110052</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Applications of Mathematics ; Mathematical and Computational Physics ; Nonlinear differential equations ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Theoretical and mathematical physics, 2016-11, Vol.189 (2), p.1592-1608</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c311t-4459aed80ba5ccda6f5b934a2232db63be25852adb68165baa5457cc21db21ff3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040577916110052$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040577916110052$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Kaptsov, O. V.</creatorcontrib><title>Algebraic and geometric structures of analytic partial differential equations</title><title>Theoretical and mathematical physics</title><addtitle>Theor Math Phys</addtitle><description>We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.</description><subject>Applications of Mathematics</subject><subject>Mathematical and Computational Physics</subject><subject>Nonlinear differential equations</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0040-5779</issn><issn>1573-9333</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1UD1PwzAQtRBIlMIPYIvEHPD5I3HGqgKKVMQAzNHZsatUadLaztB_j0sYkBDT3bv3odMj5BboPQAXD--UCirLsoICgFLJzsgMZMnzinN-TmYnOj_xl-QqhC2lSaRgRl4X3cZqj63JsG-yjR12NvqEQvSjiaO3IRtc4rA7xnTeo48tdlnTOme97b-BPYwY26EP1-TCYRfszc-ck8-nx4_lKl-_Pb8sF-vccICYCyErtI2iGqUxDRZO6ooLZIyzRhdcWyaVZJh2BYXUiFLI0hgGjWbgHJ-Tuyl374fDaEOst8Po04-hBqWoYkJSnlQwqYwfQvDW1Xvf7tAfa6D1qbX6T2vJwyZPSNp-Y_2v5H9NX0L0bzc</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Kaptsov, O. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161101</creationdate><title>Algebraic and geometric structures of analytic partial differential equations</title><author>Kaptsov, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c311t-4459aed80ba5ccda6f5b934a2232db63be25852adb68165baa5457cc21db21ff3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Mathematical and Computational Physics</topic><topic>Nonlinear differential equations</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaptsov, O. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaptsov, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Algebraic and geometric structures of analytic partial differential equations</atitle><jtitle>Theoretical and mathematical physics</jtitle><stitle>Theor Math Phys</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>189</volume><issue>2</issue><spage>1592</spage><epage>1608</epage><pages>1592-1608</pages><issn>0040-5779</issn><eissn>1573-9333</eissn><abstract>We study the problem of the compatibility of nonlinear partial differential equations. We introduce the algebra of convergent power series, the module of derivations of this algebra, and the module of Pfaffian forms. Systems of differential equations are given by power series in the space of infinite jets. We develop a technique for studying the compatibility of differential systems analogous to the Gröbner bases. Using certain assumptions, we prove that compatible systems generate infinite manifolds.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040577916110052</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5779 |
ispartof | Theoretical and mathematical physics, 2016-11, Vol.189 (2), p.1592-1608 |
issn | 0040-5779 1573-9333 |
language | eng |
recordid | cdi_proquest_journals_1880824503 |
source | Springer Nature - Complete Springer Journals |
subjects | Applications of Mathematics Mathematical and Computational Physics Nonlinear differential equations Physics Physics and Astronomy Theoretical |
title | Algebraic and geometric structures of analytic partial differential equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T06%3A24%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Algebraic%20and%20geometric%20structures%20of%20analytic%20partial%20differential%20equations&rft.jtitle=Theoretical%20and%20mathematical%20physics&rft.au=Kaptsov,%20O.%20V.&rft.date=2016-11-01&rft.volume=189&rft.issue=2&rft.spage=1592&rft.epage=1608&rft.pages=1592-1608&rft.issn=0040-5779&rft.eissn=1573-9333&rft_id=info:doi/10.1134/S0040577916110052&rft_dat=%3Cproquest_cross%3E1880824503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880824503&rft_id=info:pmid/&rfr_iscdi=true |