Gradient estimates for porous medium equations under the Ricci flow
A local gradient estimate for positive solutions of porous medium equations on complete noncompact Riemannian manifolds under the Ricci flow is derived. Moreover, a global gradient estimate for such equations on compact Riemannian manifolds is also obtained.
Gespeichert in:
Veröffentlicht in: | Applied Mathematics-A Journal of Chinese Universities 2016-12, Vol.31 (4), p.481-490 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 490 |
---|---|
container_issue | 4 |
container_start_page | 481 |
container_title | Applied Mathematics-A Journal of Chinese Universities |
container_volume | 31 |
creator | Shen, Li-ju Yao, Sha Zhang, Guang-ying Ren, Xin-an |
description | A local gradient estimate for positive solutions of porous medium equations on complete noncompact Riemannian manifolds under the Ricci flow is derived. Moreover, a global gradient estimate for such equations on compact Riemannian manifolds is also obtained. |
doi_str_mv | 10.1007/s11766-016-3368-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880824369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>670764254</cqvip_id><sourcerecordid>1880824369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-5d3ffc914a4f92251f9be21a8aabe079f31763a3d8de7556fbdcdbd5ba1b511f3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGo_gLeg5-jM5s_uHqVoFQqC6DlkN0m7pd20yS7itzfSIp48zRzeb968R8g1wh0ClPcJsVSKASrGuaoYnpEJ1jVnIIQ8zzuAZAgcL8kspQ0AoCiFlNWEzBfR2M71A3Vp6HZmcIn6EOk-xDAmunO2G3fUHUYzdKFPdOyti3RYO_rWtW1H_TZ8XpELb7bJzU5zSj6eHt_nz2z5uniZPyxZywUfmLTc-7ZGYYSvi0KirxtXoKmMaRyUtec5BTfcVtaVUirf2NY2VjYGG4no-ZTcHu_uYziM-V-9CWPss6XGqoKqEFzVWYVHVRtDStF5vY85WPzSCPqnLn2sS-e69E9dGjNTHJmUtf3KxT-X_4FuTkbr0K8Omft1UiWUShRS8G-3Wni_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880824369</pqid></control><display><type>article</type><title>Gradient estimates for porous medium equations under the Ricci flow</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shen, Li-ju ; Yao, Sha ; Zhang, Guang-ying ; Ren, Xin-an</creator><creatorcontrib>Shen, Li-ju ; Yao, Sha ; Zhang, Guang-ying ; Ren, Xin-an</creatorcontrib><description>A local gradient estimate for positive solutions of porous medium equations on complete noncompact Riemannian manifolds under the Ricci flow is derived. Moreover, a global gradient estimate for such equations on compact Riemannian manifolds is also obtained.</description><identifier>ISSN: 1005-1031</identifier><identifier>EISSN: 1993-0445</identifier><identifier>DOI: 10.1007/s11766-016-3368-1</identifier><language>eng</language><publisher>Hangzhou: Editorial Committee of Applied Mathematics - A Journal of Chinese Universities</publisher><subject>Applications of Mathematics ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Porous media ; Riemann manifold ; Theorems ; 多孔介质方程 ; 整体解 ; 梯度估计 ; 正解 ; 渗流 ; 非紧黎曼流形</subject><ispartof>Applied Mathematics-A Journal of Chinese Universities, 2016-12, Vol.31 (4), p.481-490</ispartof><rights>Editorial Committee of Applied Mathematics-A Journal of Chinese Universities and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-5d3ffc914a4f92251f9be21a8aabe079f31763a3d8de7556fbdcdbd5ba1b511f3</citedby><cites>FETCH-LOGICAL-c343t-5d3ffc914a4f92251f9be21a8aabe079f31763a3d8de7556fbdcdbd5ba1b511f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86762X/86762X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11766-016-3368-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11766-016-3368-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Shen, Li-ju</creatorcontrib><creatorcontrib>Yao, Sha</creatorcontrib><creatorcontrib>Zhang, Guang-ying</creatorcontrib><creatorcontrib>Ren, Xin-an</creatorcontrib><title>Gradient estimates for porous medium equations under the Ricci flow</title><title>Applied Mathematics-A Journal of Chinese Universities</title><addtitle>Appl. Math. J. Chin. Univ</addtitle><addtitle>Applied Mathematics A Journal of Chinese Universities</addtitle><description>A local gradient estimate for positive solutions of porous medium equations on complete noncompact Riemannian manifolds under the Ricci flow is derived. Moreover, a global gradient estimate for such equations on compact Riemannian manifolds is also obtained.</description><subject>Applications of Mathematics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Porous media</subject><subject>Riemann manifold</subject><subject>Theorems</subject><subject>多孔介质方程</subject><subject>整体解</subject><subject>梯度估计</subject><subject>正解</subject><subject>渗流</subject><subject>非紧黎曼流形</subject><issn>1005-1031</issn><issn>1993-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGo_gLeg5-jM5s_uHqVoFQqC6DlkN0m7pd20yS7itzfSIp48zRzeb968R8g1wh0ClPcJsVSKASrGuaoYnpEJ1jVnIIQ8zzuAZAgcL8kspQ0AoCiFlNWEzBfR2M71A3Vp6HZmcIn6EOk-xDAmunO2G3fUHUYzdKFPdOyti3RYO_rWtW1H_TZ8XpELb7bJzU5zSj6eHt_nz2z5uniZPyxZywUfmLTc-7ZGYYSvi0KirxtXoKmMaRyUtec5BTfcVtaVUirf2NY2VjYGG4no-ZTcHu_uYziM-V-9CWPss6XGqoKqEFzVWYVHVRtDStF5vY85WPzSCPqnLn2sS-e69E9dGjNTHJmUtf3KxT-X_4FuTkbr0K8Omft1UiWUShRS8G-3Wni_</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Shen, Li-ju</creator><creator>Yao, Sha</creator><creator>Zhang, Guang-ying</creator><creator>Ren, Xin-an</creator><general>Editorial Committee of Applied Mathematics - A Journal of Chinese Universities</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Gradient estimates for porous medium equations under the Ricci flow</title><author>Shen, Li-ju ; Yao, Sha ; Zhang, Guang-ying ; Ren, Xin-an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-5d3ffc914a4f92251f9be21a8aabe079f31763a3d8de7556fbdcdbd5ba1b511f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Porous media</topic><topic>Riemann manifold</topic><topic>Theorems</topic><topic>多孔介质方程</topic><topic>整体解</topic><topic>梯度估计</topic><topic>正解</topic><topic>渗流</topic><topic>非紧黎曼流形</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Li-ju</creatorcontrib><creatorcontrib>Yao, Sha</creatorcontrib><creatorcontrib>Zhang, Guang-ying</creatorcontrib><creatorcontrib>Ren, Xin-an</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Applied Mathematics-A Journal of Chinese Universities</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Li-ju</au><au>Yao, Sha</au><au>Zhang, Guang-ying</au><au>Ren, Xin-an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient estimates for porous medium equations under the Ricci flow</atitle><jtitle>Applied Mathematics-A Journal of Chinese Universities</jtitle><stitle>Appl. Math. J. Chin. Univ</stitle><addtitle>Applied Mathematics A Journal of Chinese Universities</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>31</volume><issue>4</issue><spage>481</spage><epage>490</epage><pages>481-490</pages><issn>1005-1031</issn><eissn>1993-0445</eissn><abstract>A local gradient estimate for positive solutions of porous medium equations on complete noncompact Riemannian manifolds under the Ricci flow is derived. Moreover, a global gradient estimate for such equations on compact Riemannian manifolds is also obtained.</abstract><cop>Hangzhou</cop><pub>Editorial Committee of Applied Mathematics - A Journal of Chinese Universities</pub><doi>10.1007/s11766-016-3368-1</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1005-1031 |
ispartof | Applied Mathematics-A Journal of Chinese Universities, 2016-12, Vol.31 (4), p.481-490 |
issn | 1005-1031 1993-0445 |
language | eng |
recordid | cdi_proquest_journals_1880824369 |
source | Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings |
subjects | Applications of Mathematics Mathematical analysis Mathematics Mathematics and Statistics Porous media Riemann manifold Theorems 多孔介质方程 整体解 梯度估计 正解 渗流 非紧黎曼流形 |
title | Gradient estimates for porous medium equations under the Ricci flow |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20estimates%20for%20porous%20medium%20equations%20under%20the%20Ricci%20flow&rft.jtitle=Applied%20Mathematics-A%20Journal%20of%20Chinese%20Universities&rft.au=Shen,%20Li-ju&rft.date=2016-12-01&rft.volume=31&rft.issue=4&rft.spage=481&rft.epage=490&rft.pages=481-490&rft.issn=1005-1031&rft.eissn=1993-0445&rft_id=info:doi/10.1007/s11766-016-3368-1&rft_dat=%3Cproquest_cross%3E1880824369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880824369&rft_id=info:pmid/&rft_cqvip_id=670764254&rfr_iscdi=true |