Gradient estimates for porous medium equations under the Ricci flow

A local gradient estimate for positive solutions of porous medium equations on complete noncompact Riemannian manifolds under the Ricci flow is derived. Moreover, a global gradient estimate for such equations on compact Riemannian manifolds is also obtained.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematics-A Journal of Chinese Universities 2016-12, Vol.31 (4), p.481-490
Hauptverfasser: Shen, Li-ju, Yao, Sha, Zhang, Guang-ying, Ren, Xin-an
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 490
container_issue 4
container_start_page 481
container_title Applied Mathematics-A Journal of Chinese Universities
container_volume 31
creator Shen, Li-ju
Yao, Sha
Zhang, Guang-ying
Ren, Xin-an
description A local gradient estimate for positive solutions of porous medium equations on complete noncompact Riemannian manifolds under the Ricci flow is derived. Moreover, a global gradient estimate for such equations on compact Riemannian manifolds is also obtained.
doi_str_mv 10.1007/s11766-016-3368-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880824369</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>670764254</cqvip_id><sourcerecordid>1880824369</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-5d3ffc914a4f92251f9be21a8aabe079f31763a3d8de7556fbdcdbd5ba1b511f3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWGo_gLeg5-jM5s_uHqVoFQqC6DlkN0m7pd20yS7itzfSIp48zRzeb968R8g1wh0ClPcJsVSKASrGuaoYnpEJ1jVnIIQ8zzuAZAgcL8kspQ0AoCiFlNWEzBfR2M71A3Vp6HZmcIn6EOk-xDAmunO2G3fUHUYzdKFPdOyti3RYO_rWtW1H_TZ8XpELb7bJzU5zSj6eHt_nz2z5uniZPyxZywUfmLTc-7ZGYYSvi0KirxtXoKmMaRyUtec5BTfcVtaVUirf2NY2VjYGG4no-ZTcHu_uYziM-V-9CWPss6XGqoKqEFzVWYVHVRtDStF5vY85WPzSCPqnLn2sS-e69E9dGjNTHJmUtf3KxT-X_4FuTkbr0K8Omft1UiWUShRS8G-3Wni_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880824369</pqid></control><display><type>article</type><title>Gradient estimates for porous medium equations under the Ricci flow</title><source>Alma/SFX Local Collection</source><source>SpringerLink Journals - AutoHoldings</source><creator>Shen, Li-ju ; Yao, Sha ; Zhang, Guang-ying ; Ren, Xin-an</creator><creatorcontrib>Shen, Li-ju ; Yao, Sha ; Zhang, Guang-ying ; Ren, Xin-an</creatorcontrib><description>A local gradient estimate for positive solutions of porous medium equations on complete noncompact Riemannian manifolds under the Ricci flow is derived. Moreover, a global gradient estimate for such equations on compact Riemannian manifolds is also obtained.</description><identifier>ISSN: 1005-1031</identifier><identifier>EISSN: 1993-0445</identifier><identifier>DOI: 10.1007/s11766-016-3368-1</identifier><language>eng</language><publisher>Hangzhou: Editorial Committee of Applied Mathematics - A Journal of Chinese Universities</publisher><subject>Applications of Mathematics ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Porous media ; Riemann manifold ; Theorems ; 多孔介质方程 ; 整体解 ; 梯度估计 ; 正解 ; 渗流 ; 非紧黎曼流形</subject><ispartof>Applied Mathematics-A Journal of Chinese Universities, 2016-12, Vol.31 (4), p.481-490</ispartof><rights>Editorial Committee of Applied Mathematics-A Journal of Chinese Universities and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-5d3ffc914a4f92251f9be21a8aabe079f31763a3d8de7556fbdcdbd5ba1b511f3</citedby><cites>FETCH-LOGICAL-c343t-5d3ffc914a4f92251f9be21a8aabe079f31763a3d8de7556fbdcdbd5ba1b511f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/86762X/86762X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11766-016-3368-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11766-016-3368-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Shen, Li-ju</creatorcontrib><creatorcontrib>Yao, Sha</creatorcontrib><creatorcontrib>Zhang, Guang-ying</creatorcontrib><creatorcontrib>Ren, Xin-an</creatorcontrib><title>Gradient estimates for porous medium equations under the Ricci flow</title><title>Applied Mathematics-A Journal of Chinese Universities</title><addtitle>Appl. Math. J. Chin. Univ</addtitle><addtitle>Applied Mathematics A Journal of Chinese Universities</addtitle><description>A local gradient estimate for positive solutions of porous medium equations on complete noncompact Riemannian manifolds under the Ricci flow is derived. Moreover, a global gradient estimate for such equations on compact Riemannian manifolds is also obtained.</description><subject>Applications of Mathematics</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Porous media</subject><subject>Riemann manifold</subject><subject>Theorems</subject><subject>多孔介质方程</subject><subject>整体解</subject><subject>梯度估计</subject><subject>正解</subject><subject>渗流</subject><subject>非紧黎曼流形</subject><issn>1005-1031</issn><issn>1993-0445</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWGo_gLeg5-jM5s_uHqVoFQqC6DlkN0m7pd20yS7itzfSIp48zRzeb968R8g1wh0ClPcJsVSKASrGuaoYnpEJ1jVnIIQ8zzuAZAgcL8kspQ0AoCiFlNWEzBfR2M71A3Vp6HZmcIn6EOk-xDAmunO2G3fUHUYzdKFPdOyti3RYO_rWtW1H_TZ8XpELb7bJzU5zSj6eHt_nz2z5uniZPyxZywUfmLTc-7ZGYYSvi0KirxtXoKmMaRyUtec5BTfcVtaVUirf2NY2VjYGG4no-ZTcHu_uYziM-V-9CWPss6XGqoKqEFzVWYVHVRtDStF5vY85WPzSCPqnLn2sS-e69E9dGjNTHJmUtf3KxT-X_4FuTkbr0K8Omft1UiWUShRS8G-3Wni_</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Shen, Li-ju</creator><creator>Yao, Sha</creator><creator>Zhang, Guang-ying</creator><creator>Ren, Xin-an</creator><general>Editorial Committee of Applied Mathematics - A Journal of Chinese Universities</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161201</creationdate><title>Gradient estimates for porous medium equations under the Ricci flow</title><author>Shen, Li-ju ; Yao, Sha ; Zhang, Guang-ying ; Ren, Xin-an</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-5d3ffc914a4f92251f9be21a8aabe079f31763a3d8de7556fbdcdbd5ba1b511f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Applications of Mathematics</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Porous media</topic><topic>Riemann manifold</topic><topic>Theorems</topic><topic>多孔介质方程</topic><topic>整体解</topic><topic>梯度估计</topic><topic>正解</topic><topic>渗流</topic><topic>非紧黎曼流形</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shen, Li-ju</creatorcontrib><creatorcontrib>Yao, Sha</creatorcontrib><creatorcontrib>Zhang, Guang-ying</creatorcontrib><creatorcontrib>Ren, Xin-an</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><jtitle>Applied Mathematics-A Journal of Chinese Universities</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shen, Li-ju</au><au>Yao, Sha</au><au>Zhang, Guang-ying</au><au>Ren, Xin-an</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gradient estimates for porous medium equations under the Ricci flow</atitle><jtitle>Applied Mathematics-A Journal of Chinese Universities</jtitle><stitle>Appl. Math. J. Chin. Univ</stitle><addtitle>Applied Mathematics A Journal of Chinese Universities</addtitle><date>2016-12-01</date><risdate>2016</risdate><volume>31</volume><issue>4</issue><spage>481</spage><epage>490</epage><pages>481-490</pages><issn>1005-1031</issn><eissn>1993-0445</eissn><abstract>A local gradient estimate for positive solutions of porous medium equations on complete noncompact Riemannian manifolds under the Ricci flow is derived. Moreover, a global gradient estimate for such equations on compact Riemannian manifolds is also obtained.</abstract><cop>Hangzhou</cop><pub>Editorial Committee of Applied Mathematics - A Journal of Chinese Universities</pub><doi>10.1007/s11766-016-3368-1</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1005-1031
ispartof Applied Mathematics-A Journal of Chinese Universities, 2016-12, Vol.31 (4), p.481-490
issn 1005-1031
1993-0445
language eng
recordid cdi_proquest_journals_1880824369
source Alma/SFX Local Collection; SpringerLink Journals - AutoHoldings
subjects Applications of Mathematics
Mathematical analysis
Mathematics
Mathematics and Statistics
Porous media
Riemann manifold
Theorems
多孔介质方程
整体解
梯度估计
正解
渗流
非紧黎曼流形
title Gradient estimates for porous medium equations under the Ricci flow
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T17%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gradient%20estimates%20for%20porous%20medium%20equations%20under%20the%20Ricci%20flow&rft.jtitle=Applied%20Mathematics-A%20Journal%20of%20Chinese%20Universities&rft.au=Shen,%20Li-ju&rft.date=2016-12-01&rft.volume=31&rft.issue=4&rft.spage=481&rft.epage=490&rft.pages=481-490&rft.issn=1005-1031&rft.eissn=1993-0445&rft_id=info:doi/10.1007/s11766-016-3368-1&rft_dat=%3Cproquest_cross%3E1880824369%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880824369&rft_id=info:pmid/&rft_cqvip_id=670764254&rfr_iscdi=true