Percolation and the electron–electron interaction in an array of antidots

A square lattice of microcontacts with a period of 1 μm in a dense low-mobility two-dimensional electron gas is studied experimentally and numerically. At the variation of the gate voltage V g , the conductivity of the array varies by five orders of magnitude in the temperature range T from 1.4 to 7...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:JETP letters 2016-10, Vol.104 (7), p.473-478
Hauptverfasser: Tkachenko, V. A., Tkachenko, O. A., Minkov, G. M., Sherstobitov, A. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 478
container_issue 7
container_start_page 473
container_title JETP letters
container_volume 104
creator Tkachenko, V. A.
Tkachenko, O. A.
Minkov, G. M.
Sherstobitov, A. A.
description A square lattice of microcontacts with a period of 1 μm in a dense low-mobility two-dimensional electron gas is studied experimentally and numerically. At the variation of the gate voltage V g , the conductivity of the array varies by five orders of magnitude in the temperature range T from 1.4 to 77 K in good agreement with the formula σ( V g ) = ( V g − V g * ( T )) β with β = 4. The saturation of σ( T ) at low temperatures is absent because of the electron–electron interaction. A random-lattice model with a phenomenological potential in microcontacts reproduces the dependence σ( T , V g ) and makes it possible to determine the fraction of microcontacts x ( V g , T ) with conductances higher than σ. It is found that the dependence x ( V g ) is nonlinear and the critical exponent in the formula σ ∝ − ( x - 1/2) t in the range 1.3 < t ( T , V g ) < β.
doi_str_mv 10.1134/S0021364016190115
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880818624</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880818624</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-e17e61b2105116967af882e6292b148880e9090acb3785a9e14406717dec43d33</originalsourceid><addsrcrecordid>eNp1kMFKxDAQhoMouK4-gLeC52omSZP0KIu64oKCei5pOtUutVmT7GFvvoNv6JOYugqCeJof_u__ZxhCjoGeAnBxdk8pAy4FBQklBSh2yARoSXMptNolk9HOR3-fHISwpAnRXE3IzR1663oTOzdkZmiy-IwZ9mijd8PH2_uPzLohojf2i-tGNDPem03m2qRj17gYDslea_qAR99zSh4vLx5m83xxe3U9O1_kloOMOYJCCTUDWgDIUirTas1QspLVILTWFMt0ubE1V7owJYIQVCpQDVrBG86n5GTbu_LudY0hVku39kNaWUFKa9CSiUTBlrLeheCxrVa-ezF-UwGtxp9Vf36WMmybCYkdntD_av439AlksWzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880818624</pqid></control><display><type>article</type><title>Percolation and the electron–electron interaction in an array of antidots</title><source>SpringerLink Journals</source><creator>Tkachenko, V. A. ; Tkachenko, O. A. ; Minkov, G. M. ; Sherstobitov, A. A.</creator><creatorcontrib>Tkachenko, V. A. ; Tkachenko, O. A. ; Minkov, G. M. ; Sherstobitov, A. A.</creatorcontrib><description>A square lattice of microcontacts with a period of 1 μm in a dense low-mobility two-dimensional electron gas is studied experimentally and numerically. At the variation of the gate voltage V g , the conductivity of the array varies by five orders of magnitude in the temperature range T from 1.4 to 77 K in good agreement with the formula σ( V g ) = ( V g − V g * ( T )) β with β = 4. The saturation of σ( T ) at low temperatures is absent because of the electron–electron interaction. A random-lattice model with a phenomenological potential in microcontacts reproduces the dependence σ( T , V g ) and makes it possible to determine the fraction of microcontacts x ( V g , T ) with conductances higher than σ. It is found that the dependence x ( V g ) is nonlinear and the critical exponent in the formula σ ∝ − ( x - 1/2) t in the range 1.3 &lt; t ( T , V g ) &lt; β.</description><identifier>ISSN: 0021-3640</identifier><identifier>EISSN: 1090-6487</identifier><identifier>DOI: 10.1134/S0021364016190115</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Antidots ; Atomic ; Biological and Medical Physics ; Biophysics ; Condensed Matter ; Electron gas ; Mathematical models ; Molecular ; Optical and Plasma Physics ; Particle and Nuclear Physics ; Physics ; Physics and Astronomy ; Quantum Information Technology ; Solid State Physics ; Spintronics</subject><ispartof>JETP letters, 2016-10, Vol.104 (7), p.473-478</ispartof><rights>Pleiades Publishing, Inc. 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-e17e61b2105116967af882e6292b148880e9090acb3785a9e14406717dec43d33</citedby><cites>FETCH-LOGICAL-c316t-e17e61b2105116967af882e6292b148880e9090acb3785a9e14406717dec43d33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0021364016190115$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0021364016190115$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Tkachenko, V. A.</creatorcontrib><creatorcontrib>Tkachenko, O. A.</creatorcontrib><creatorcontrib>Minkov, G. M.</creatorcontrib><creatorcontrib>Sherstobitov, A. A.</creatorcontrib><title>Percolation and the electron–electron interaction in an array of antidots</title><title>JETP letters</title><addtitle>Jetp Lett</addtitle><description>A square lattice of microcontacts with a period of 1 μm in a dense low-mobility two-dimensional electron gas is studied experimentally and numerically. At the variation of the gate voltage V g , the conductivity of the array varies by five orders of magnitude in the temperature range T from 1.4 to 77 K in good agreement with the formula σ( V g ) = ( V g − V g * ( T )) β with β = 4. The saturation of σ( T ) at low temperatures is absent because of the electron–electron interaction. A random-lattice model with a phenomenological potential in microcontacts reproduces the dependence σ( T , V g ) and makes it possible to determine the fraction of microcontacts x ( V g , T ) with conductances higher than σ. It is found that the dependence x ( V g ) is nonlinear and the critical exponent in the formula σ ∝ − ( x - 1/2) t in the range 1.3 &lt; t ( T , V g ) &lt; β.</description><subject>Antidots</subject><subject>Atomic</subject><subject>Biological and Medical Physics</subject><subject>Biophysics</subject><subject>Condensed Matter</subject><subject>Electron gas</subject><subject>Mathematical models</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle and Nuclear Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Information Technology</subject><subject>Solid State Physics</subject><subject>Spintronics</subject><issn>0021-3640</issn><issn>1090-6487</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKxDAQhoMouK4-gLeC52omSZP0KIu64oKCei5pOtUutVmT7GFvvoNv6JOYugqCeJof_u__ZxhCjoGeAnBxdk8pAy4FBQklBSh2yARoSXMptNolk9HOR3-fHISwpAnRXE3IzR1663oTOzdkZmiy-IwZ9mijd8PH2_uPzLohojf2i-tGNDPem03m2qRj17gYDslea_qAR99zSh4vLx5m83xxe3U9O1_kloOMOYJCCTUDWgDIUirTas1QspLVILTWFMt0ubE1V7owJYIQVCpQDVrBG86n5GTbu_LudY0hVku39kNaWUFKa9CSiUTBlrLeheCxrVa-ezF-UwGtxp9Vf36WMmybCYkdntD_av439AlksWzo</recordid><startdate>20161001</startdate><enddate>20161001</enddate><creator>Tkachenko, V. A.</creator><creator>Tkachenko, O. A.</creator><creator>Minkov, G. M.</creator><creator>Sherstobitov, A. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161001</creationdate><title>Percolation and the electron–electron interaction in an array of antidots</title><author>Tkachenko, V. A. ; Tkachenko, O. A. ; Minkov, G. M. ; Sherstobitov, A. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-e17e61b2105116967af882e6292b148880e9090acb3785a9e14406717dec43d33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Antidots</topic><topic>Atomic</topic><topic>Biological and Medical Physics</topic><topic>Biophysics</topic><topic>Condensed Matter</topic><topic>Electron gas</topic><topic>Mathematical models</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle and Nuclear Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Information Technology</topic><topic>Solid State Physics</topic><topic>Spintronics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tkachenko, V. A.</creatorcontrib><creatorcontrib>Tkachenko, O. A.</creatorcontrib><creatorcontrib>Minkov, G. M.</creatorcontrib><creatorcontrib>Sherstobitov, A. A.</creatorcontrib><collection>CrossRef</collection><jtitle>JETP letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tkachenko, V. A.</au><au>Tkachenko, O. A.</au><au>Minkov, G. M.</au><au>Sherstobitov, A. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Percolation and the electron–electron interaction in an array of antidots</atitle><jtitle>JETP letters</jtitle><stitle>Jetp Lett</stitle><date>2016-10-01</date><risdate>2016</risdate><volume>104</volume><issue>7</issue><spage>473</spage><epage>478</epage><pages>473-478</pages><issn>0021-3640</issn><eissn>1090-6487</eissn><abstract>A square lattice of microcontacts with a period of 1 μm in a dense low-mobility two-dimensional electron gas is studied experimentally and numerically. At the variation of the gate voltage V g , the conductivity of the array varies by five orders of magnitude in the temperature range T from 1.4 to 77 K in good agreement with the formula σ( V g ) = ( V g − V g * ( T )) β with β = 4. The saturation of σ( T ) at low temperatures is absent because of the electron–electron interaction. A random-lattice model with a phenomenological potential in microcontacts reproduces the dependence σ( T , V g ) and makes it possible to determine the fraction of microcontacts x ( V g , T ) with conductances higher than σ. It is found that the dependence x ( V g ) is nonlinear and the critical exponent in the formula σ ∝ − ( x - 1/2) t in the range 1.3 &lt; t ( T , V g ) &lt; β.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0021364016190115</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-3640
ispartof JETP letters, 2016-10, Vol.104 (7), p.473-478
issn 0021-3640
1090-6487
language eng
recordid cdi_proquest_journals_1880818624
source SpringerLink Journals
subjects Antidots
Atomic
Biological and Medical Physics
Biophysics
Condensed Matter
Electron gas
Mathematical models
Molecular
Optical and Plasma Physics
Particle and Nuclear Physics
Physics
Physics and Astronomy
Quantum Information Technology
Solid State Physics
Spintronics
title Percolation and the electron–electron interaction in an array of antidots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T05%3A04%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Percolation%20and%20the%20electron%E2%80%93electron%20interaction%20in%20an%20array%20of%20antidots&rft.jtitle=JETP%20letters&rft.au=Tkachenko,%20V.%20A.&rft.date=2016-10-01&rft.volume=104&rft.issue=7&rft.spage=473&rft.epage=478&rft.pages=473-478&rft.issn=0021-3640&rft.eissn=1090-6487&rft_id=info:doi/10.1134/S0021364016190115&rft_dat=%3Cproquest_cross%3E1880818624%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880818624&rft_id=info:pmid/&rfr_iscdi=true