Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity
In this paper, the bifurcation values for two typical piecewise monotonic maps with a single discontinuity are computed. The variation of the parameter of those maps leads to a sequence of border-collision and period-doubling bifurcations, generating a sequence of anharmonic orbits on the boundary o...
Gespeichert in:
Veröffentlicht in: | Zeitschrift für angewandte Mathematik und Physik 2017-02, Vol.68 (1), p.1-19, Article 12 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 19 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Zeitschrift für angewandte Mathematik und Physik |
container_volume | 68 |
creator | Li, Yurong Du, Zhengdong |
description | In this paper, the bifurcation values for two typical piecewise monotonic maps with a single discontinuity are computed. The variation of the parameter of those maps leads to a sequence of border-collision and period-doubling bifurcations, generating a sequence of anharmonic orbits on the boundary of chaos. The border-collision and period-doubling bifurcation values are computed by the word-lifting technique and the Maple fsolve function or the Newton–Raphson method, respectively. The scaling factors which measure the convergent rates of the bifurcation values and the width of the stable periodic windows, respectively, are investigated. We found that these scaling factors depend on the parameters of the maps, implying that they are not universal. Moreover, if one side of the maps is linear, our numerical results suggest that those quantities converge increasingly. In particular, for the linear-quadratic case, they converge to one of the Feigenbaum constants
δ
F
=
4.66920160
⋯
. |
doi_str_mv | 10.1007/s00033-016-0757-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880812025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880812025</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-8823658a402943ee71e60a7103da61ff58df4b1c3dff8aac78908d7fc6040ae83</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEuXjB7BZYjac7SR2RlTxJVVigdm4id26auxgO6r670kIAwvTDfe8750ehG4o3FEAcZ8AgHMCtCIgSkHKE7SgBQNSA69P0QKgKAhjojxHFyntRlpQ4Av0uQxdP2SdXfA4WJy3Bmu_1bEL3jU4xLXLCTuP8yHg3pnGHFwyeNyG_EN0uk_44PIWa5yc3-wNbl1qgs_ODy4fr9CZ1ftkrn_nJfp4enxfvpDV2_Pr8mFFGlbJTKRkvCqlLoDVBTdGUFOBnn5sdUWtLWVrizVteGut1LoRsgbZCttUUIA2kl-i27m3j-FrMCmrXRiiH08qKiVIyoCVI0VnqokhpWis6qPrdDwqCmoSqWaRahSpJpFqyrA5k0bWb0z80_xv6BsWmXbs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880812025</pqid></control><display><type>article</type><title>Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity</title><source>SpringerNature Journals</source><creator>Li, Yurong ; Du, Zhengdong</creator><creatorcontrib>Li, Yurong ; Du, Zhengdong</creatorcontrib><description>In this paper, the bifurcation values for two typical piecewise monotonic maps with a single discontinuity are computed. The variation of the parameter of those maps leads to a sequence of border-collision and period-doubling bifurcations, generating a sequence of anharmonic orbits on the boundary of chaos. The border-collision and period-doubling bifurcation values are computed by the word-lifting technique and the Maple fsolve function or the Newton–Raphson method, respectively. The scaling factors which measure the convergent rates of the bifurcation values and the width of the stable periodic windows, respectively, are investigated. We found that these scaling factors depend on the parameters of the maps, implying that they are not universal. Moreover, if one side of the maps is linear, our numerical results suggest that those quantities converge increasingly. In particular, for the linear-quadratic case, they converge to one of the Feigenbaum constants
δ
F
=
4.66920160
⋯
.</description><identifier>ISSN: 0044-2275</identifier><identifier>EISSN: 1420-9039</identifier><identifier>DOI: 10.1007/s00033-016-0757-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Anharmonicity ; Bifurcations ; Computation ; Convergence ; Discontinuity ; Engineering ; Mathematical Methods in Physics ; Newton-Raphson method ; Orbits ; Parameters ; Scaling factors ; Theoretical and Applied Mechanics</subject><ispartof>Zeitschrift für angewandte Mathematik und Physik, 2017-02, Vol.68 (1), p.1-19, Article 12</ispartof><rights>Springer International Publishing 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-8823658a402943ee71e60a7103da61ff58df4b1c3dff8aac78908d7fc6040ae83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00033-016-0757-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00033-016-0757-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Li, Yurong</creatorcontrib><creatorcontrib>Du, Zhengdong</creatorcontrib><title>Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity</title><title>Zeitschrift für angewandte Mathematik und Physik</title><addtitle>Z. Angew. Math. Phys</addtitle><description>In this paper, the bifurcation values for two typical piecewise monotonic maps with a single discontinuity are computed. The variation of the parameter of those maps leads to a sequence of border-collision and period-doubling bifurcations, generating a sequence of anharmonic orbits on the boundary of chaos. The border-collision and period-doubling bifurcation values are computed by the word-lifting technique and the Maple fsolve function or the Newton–Raphson method, respectively. The scaling factors which measure the convergent rates of the bifurcation values and the width of the stable periodic windows, respectively, are investigated. We found that these scaling factors depend on the parameters of the maps, implying that they are not universal. Moreover, if one side of the maps is linear, our numerical results suggest that those quantities converge increasingly. In particular, for the linear-quadratic case, they converge to one of the Feigenbaum constants
δ
F
=
4.66920160
⋯
.</description><subject>Anharmonicity</subject><subject>Bifurcations</subject><subject>Computation</subject><subject>Convergence</subject><subject>Discontinuity</subject><subject>Engineering</subject><subject>Mathematical Methods in Physics</subject><subject>Newton-Raphson method</subject><subject>Orbits</subject><subject>Parameters</subject><subject>Scaling factors</subject><subject>Theoretical and Applied Mechanics</subject><issn>0044-2275</issn><issn>1420-9039</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEuXjB7BZYjac7SR2RlTxJVVigdm4id26auxgO6r670kIAwvTDfe8750ehG4o3FEAcZ8AgHMCtCIgSkHKE7SgBQNSA69P0QKgKAhjojxHFyntRlpQ4Av0uQxdP2SdXfA4WJy3Bmu_1bEL3jU4xLXLCTuP8yHg3pnGHFwyeNyG_EN0uk_44PIWa5yc3-wNbl1qgs_ODy4fr9CZ1ftkrn_nJfp4enxfvpDV2_Pr8mFFGlbJTKRkvCqlLoDVBTdGUFOBnn5sdUWtLWVrizVteGut1LoRsgbZCttUUIA2kl-i27m3j-FrMCmrXRiiH08qKiVIyoCVI0VnqokhpWis6qPrdDwqCmoSqWaRahSpJpFqyrA5k0bWb0z80_xv6BsWmXbs</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Li, Yurong</creator><creator>Du, Zhengdong</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170201</creationdate><title>Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity</title><author>Li, Yurong ; Du, Zhengdong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-8823658a402943ee71e60a7103da61ff58df4b1c3dff8aac78908d7fc6040ae83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anharmonicity</topic><topic>Bifurcations</topic><topic>Computation</topic><topic>Convergence</topic><topic>Discontinuity</topic><topic>Engineering</topic><topic>Mathematical Methods in Physics</topic><topic>Newton-Raphson method</topic><topic>Orbits</topic><topic>Parameters</topic><topic>Scaling factors</topic><topic>Theoretical and Applied Mechanics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Yurong</creatorcontrib><creatorcontrib>Du, Zhengdong</creatorcontrib><collection>CrossRef</collection><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Yurong</au><au>Du, Zhengdong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity</atitle><jtitle>Zeitschrift für angewandte Mathematik und Physik</jtitle><stitle>Z. Angew. Math. Phys</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>68</volume><issue>1</issue><spage>1</spage><epage>19</epage><pages>1-19</pages><artnum>12</artnum><issn>0044-2275</issn><eissn>1420-9039</eissn><abstract>In this paper, the bifurcation values for two typical piecewise monotonic maps with a single discontinuity are computed. The variation of the parameter of those maps leads to a sequence of border-collision and period-doubling bifurcations, generating a sequence of anharmonic orbits on the boundary of chaos. The border-collision and period-doubling bifurcation values are computed by the word-lifting technique and the Maple fsolve function or the Newton–Raphson method, respectively. The scaling factors which measure the convergent rates of the bifurcation values and the width of the stable periodic windows, respectively, are investigated. We found that these scaling factors depend on the parameters of the maps, implying that they are not universal. Moreover, if one side of the maps is linear, our numerical results suggest that those quantities converge increasingly. In particular, for the linear-quadratic case, they converge to one of the Feigenbaum constants
δ
F
=
4.66920160
⋯
.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00033-016-0757-5</doi><tpages>19</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-2275 |
ispartof | Zeitschrift für angewandte Mathematik und Physik, 2017-02, Vol.68 (1), p.1-19, Article 12 |
issn | 0044-2275 1420-9039 |
language | eng |
recordid | cdi_proquest_journals_1880812025 |
source | SpringerNature Journals |
subjects | Anharmonicity Bifurcations Computation Convergence Discontinuity Engineering Mathematical Methods in Physics Newton-Raphson method Orbits Parameters Scaling factors Theoretical and Applied Mechanics |
title | Computation of the anharmonic orbits in two piecewise monotonic maps with a single discontinuity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T19%3A57%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computation%20of%20the%20anharmonic%20orbits%20in%20two%20piecewise%20monotonic%20maps%20with%20a%20single%20discontinuity&rft.jtitle=Zeitschrift%20f%C3%BCr%20angewandte%20Mathematik%20und%20Physik&rft.au=Li,%20Yurong&rft.date=2017-02-01&rft.volume=68&rft.issue=1&rft.spage=1&rft.epage=19&rft.pages=1-19&rft.artnum=12&rft.issn=0044-2275&rft.eissn=1420-9039&rft_id=info:doi/10.1007/s00033-016-0757-5&rft_dat=%3Cproquest_cross%3E1880812025%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880812025&rft_id=info:pmid/&rfr_iscdi=true |