Multi-Classifier-Based Automatic Polyp Detection in Endoscopic Images
Automatic polyp detection in endoscopy (or colonoscopy) images is challenging because the types of polyp and their appearances are diverse, and the colors and textures of polyps are quite similar to those of normal tissues in many cases. It is thus often very difficult to distinguish polyps from nor...
Gespeichert in:
Veröffentlicht in: | Journal of medical and biological engineering 2016-12, Vol.36 (6), p.871-882 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 882 |
---|---|
container_issue | 6 |
container_start_page | 871 |
container_title | Journal of medical and biological engineering |
container_volume | 36 |
creator | Cho, Yeong-Jun Bae, Seung-Hwan Yoon, Kuk-Jin |
description | Automatic polyp detection in endoscopy (or colonoscopy) images is challenging because the types of polyp and their appearances are diverse, and the colors and textures of polyps are quite similar to those of normal tissues in many cases. It is thus often very difficult to distinguish polyps from normal tissues using conventional methodology. To effectively resolve these challenges, we propose a framework based on multi-classifier learning and a contour intensity difference (CID) measure. To detect polyps of diverse appearances, we first classify polyps into
K
types according to their shape via unsupervised learning. We then train
K
classifiers to detect the
K
types of polyp. This multi-classifier learning improves the polyp detection rate. However, false positives also increase because colon structures look similar to polyps. To reduce false positives while preserving the high detection rate, we propose a CID measure. Experimental results using public and our own datasets show that the proposed methods are promising for detecting polyps with diverse appearances. |
doi_str_mv | 10.1007/s40846-016-0190-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880803736</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880803736</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-fd73d790794554abb6fb35ca199269c4d9b1fb183fc335dd441db3e1397e4d573</originalsourceid><addsrcrecordid>eNp1kD9PwzAQxS0EElXpB2CLxGyw63_xWEqBSkUwwGw5tlO5SuNgO0O_Pa7CwMJJpxvuvXenHwC3GN1jhMRDoqimHCJ8bokgvQCzJZYSUsHEJZhhjiREsmbXYJHSAZUiknNcz8Dmbeyyh-tOp-Rb7yJ81MnZajXmcNTZm-ojdKehenLZmexDX_m-2vQ2JBOGst0e9d6lG3DV6i65xe-cg6_nzef6Fe7eX7br1Q4agnmGrRXEComEpIxR3TS8bQgzury65NJQKxvcNrgmrSGEWUsptg1xmEjhqGWCzMHdlDvE8D26lNUhjLEvJxWua1QjIggvKjypTAwpRdeqIfqjjieFkToDUxMwVYCpMzBFi2c5eVLR9nsX_yT_a_oB65lsqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880803736</pqid></control><display><type>article</type><title>Multi-Classifier-Based Automatic Polyp Detection in Endoscopic Images</title><source>SpringerLink Journals - AutoHoldings</source><creator>Cho, Yeong-Jun ; Bae, Seung-Hwan ; Yoon, Kuk-Jin</creator><creatorcontrib>Cho, Yeong-Jun ; Bae, Seung-Hwan ; Yoon, Kuk-Jin</creatorcontrib><description>Automatic polyp detection in endoscopy (or colonoscopy) images is challenging because the types of polyp and their appearances are diverse, and the colors and textures of polyps are quite similar to those of normal tissues in many cases. It is thus often very difficult to distinguish polyps from normal tissues using conventional methodology. To effectively resolve these challenges, we propose a framework based on multi-classifier learning and a contour intensity difference (CID) measure. To detect polyps of diverse appearances, we first classify polyps into
K
types according to their shape via unsupervised learning. We then train
K
classifiers to detect the
K
types of polyp. This multi-classifier learning improves the polyp detection rate. However, false positives also increase because colon structures look similar to polyps. To reduce false positives while preserving the high detection rate, we propose a CID measure. Experimental results using public and our own datasets show that the proposed methods are promising for detecting polyps with diverse appearances.</description><identifier>ISSN: 1609-0985</identifier><identifier>EISSN: 2199-4757</identifier><identifier>DOI: 10.1007/s40846-016-0190-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Biomedical Engineering and Bioengineering ; Cell Biology ; Classifiers ; Colon ; Endoscopy ; Engineering ; Image detection ; Imaging ; Learning ; Original Article ; Polyps ; Radiology ; Unsupervised learning</subject><ispartof>Journal of medical and biological engineering, 2016-12, Vol.36 (6), p.871-882</ispartof><rights>Taiwanese Society of Biomedical Engineering 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-fd73d790794554abb6fb35ca199269c4d9b1fb183fc335dd441db3e1397e4d573</citedby><cites>FETCH-LOGICAL-c316t-fd73d790794554abb6fb35ca199269c4d9b1fb183fc335dd441db3e1397e4d573</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40846-016-0190-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40846-016-0190-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Cho, Yeong-Jun</creatorcontrib><creatorcontrib>Bae, Seung-Hwan</creatorcontrib><creatorcontrib>Yoon, Kuk-Jin</creatorcontrib><title>Multi-Classifier-Based Automatic Polyp Detection in Endoscopic Images</title><title>Journal of medical and biological engineering</title><addtitle>J. Med. Biol. Eng</addtitle><description>Automatic polyp detection in endoscopy (or colonoscopy) images is challenging because the types of polyp and their appearances are diverse, and the colors and textures of polyps are quite similar to those of normal tissues in many cases. It is thus often very difficult to distinguish polyps from normal tissues using conventional methodology. To effectively resolve these challenges, we propose a framework based on multi-classifier learning and a contour intensity difference (CID) measure. To detect polyps of diverse appearances, we first classify polyps into
K
types according to their shape via unsupervised learning. We then train
K
classifiers to detect the
K
types of polyp. This multi-classifier learning improves the polyp detection rate. However, false positives also increase because colon structures look similar to polyps. To reduce false positives while preserving the high detection rate, we propose a CID measure. Experimental results using public and our own datasets show that the proposed methods are promising for detecting polyps with diverse appearances.</description><subject>Biomedical Engineering and Bioengineering</subject><subject>Cell Biology</subject><subject>Classifiers</subject><subject>Colon</subject><subject>Endoscopy</subject><subject>Engineering</subject><subject>Image detection</subject><subject>Imaging</subject><subject>Learning</subject><subject>Original Article</subject><subject>Polyps</subject><subject>Radiology</subject><subject>Unsupervised learning</subject><issn>1609-0985</issn><issn>2199-4757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kD9PwzAQxS0EElXpB2CLxGyw63_xWEqBSkUwwGw5tlO5SuNgO0O_Pa7CwMJJpxvuvXenHwC3GN1jhMRDoqimHCJ8bokgvQCzJZYSUsHEJZhhjiREsmbXYJHSAZUiknNcz8Dmbeyyh-tOp-Rb7yJ81MnZajXmcNTZm-ojdKehenLZmexDX_m-2vQ2JBOGst0e9d6lG3DV6i65xe-cg6_nzef6Fe7eX7br1Q4agnmGrRXEComEpIxR3TS8bQgzury65NJQKxvcNrgmrSGEWUsptg1xmEjhqGWCzMHdlDvE8D26lNUhjLEvJxWua1QjIggvKjypTAwpRdeqIfqjjieFkToDUxMwVYCpMzBFi2c5eVLR9nsX_yT_a_oB65lsqA</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Cho, Yeong-Jun</creator><creator>Bae, Seung-Hwan</creator><creator>Yoon, Kuk-Jin</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20161201</creationdate><title>Multi-Classifier-Based Automatic Polyp Detection in Endoscopic Images</title><author>Cho, Yeong-Jun ; Bae, Seung-Hwan ; Yoon, Kuk-Jin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-fd73d790794554abb6fb35ca199269c4d9b1fb183fc335dd441db3e1397e4d573</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Biomedical Engineering and Bioengineering</topic><topic>Cell Biology</topic><topic>Classifiers</topic><topic>Colon</topic><topic>Endoscopy</topic><topic>Engineering</topic><topic>Image detection</topic><topic>Imaging</topic><topic>Learning</topic><topic>Original Article</topic><topic>Polyps</topic><topic>Radiology</topic><topic>Unsupervised learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Cho, Yeong-Jun</creatorcontrib><creatorcontrib>Bae, Seung-Hwan</creatorcontrib><creatorcontrib>Yoon, Kuk-Jin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of medical and biological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cho, Yeong-Jun</au><au>Bae, Seung-Hwan</au><au>Yoon, Kuk-Jin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-Classifier-Based Automatic Polyp Detection in Endoscopic Images</atitle><jtitle>Journal of medical and biological engineering</jtitle><stitle>J. Med. Biol. Eng</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>36</volume><issue>6</issue><spage>871</spage><epage>882</epage><pages>871-882</pages><issn>1609-0985</issn><eissn>2199-4757</eissn><abstract>Automatic polyp detection in endoscopy (or colonoscopy) images is challenging because the types of polyp and their appearances are diverse, and the colors and textures of polyps are quite similar to those of normal tissues in many cases. It is thus often very difficult to distinguish polyps from normal tissues using conventional methodology. To effectively resolve these challenges, we propose a framework based on multi-classifier learning and a contour intensity difference (CID) measure. To detect polyps of diverse appearances, we first classify polyps into
K
types according to their shape via unsupervised learning. We then train
K
classifiers to detect the
K
types of polyp. This multi-classifier learning improves the polyp detection rate. However, false positives also increase because colon structures look similar to polyps. To reduce false positives while preserving the high detection rate, we propose a CID measure. Experimental results using public and our own datasets show that the proposed methods are promising for detecting polyps with diverse appearances.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40846-016-0190-4</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1609-0985 |
ispartof | Journal of medical and biological engineering, 2016-12, Vol.36 (6), p.871-882 |
issn | 1609-0985 2199-4757 |
language | eng |
recordid | cdi_proquest_journals_1880803736 |
source | SpringerLink Journals - AutoHoldings |
subjects | Biomedical Engineering and Bioengineering Cell Biology Classifiers Colon Endoscopy Engineering Image detection Imaging Learning Original Article Polyps Radiology Unsupervised learning |
title | Multi-Classifier-Based Automatic Polyp Detection in Endoscopic Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T15%3A39%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-Classifier-Based%20Automatic%20Polyp%20Detection%20in%20Endoscopic%20Images&rft.jtitle=Journal%20of%20medical%20and%20biological%20engineering&rft.au=Cho,%20Yeong-Jun&rft.date=2016-12-01&rft.volume=36&rft.issue=6&rft.spage=871&rft.epage=882&rft.pages=871-882&rft.issn=1609-0985&rft.eissn=2199-4757&rft_id=info:doi/10.1007/s40846-016-0190-4&rft_dat=%3Cproquest_cross%3E1880803736%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880803736&rft_id=info:pmid/&rfr_iscdi=true |