Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks
Cardiotocography is the most widely used method in obstetrics practice for monitoring fetal health status. The main goal of monitoring is early detection of fetal hypoxia. A cardiotocogram is a recording of fetal heart rate and uterine activity signals. The accurate analysis of cardiotocograms is cr...
Gespeichert in:
Veröffentlicht in: | Journal of medical and biological engineering 2016-12, Vol.36 (6), p.820-832 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 832 |
---|---|
container_issue | 6 |
container_start_page | 820 |
container_title | Journal of medical and biological engineering |
container_volume | 36 |
creator | Yılmaz, Ersen |
description | Cardiotocography is the most widely used method in obstetrics practice for monitoring fetal health status. The main goal of monitoring is early detection of fetal hypoxia. A cardiotocogram is a recording of fetal heart rate and uterine activity signals. The accurate analysis of cardiotocograms is critical for further treatment. Therefore, fetal state assessment using machine learning methods from cardiotocogram data has received significant attention in the literature. In this paper, a comparative study of fetal state assessment is presented by using three artificial neural network models, namely the multilayer perceptron neural network, probabilistic neural network, and generalized regression neural network. The performances of the models are evaluated using publicly available cardiotocogram data by running a tenfold cross-validation procedure. The models’ performances are compared in terms of overall classification accuracy. For further analysis, receiver operation characteristic analysis and the cobweb representation technique are used. |
doi_str_mv | 10.1007/s40846-016-0191-3 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880803441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880803441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-54e91d9260c361b95969b17993499232c129f4086015bdcf4f2763e75e90736e3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWGp_gLcFz6uZJJvsHEu1KhQVtOeQptmytbupSYr4701dD14cGN7lfW-YR8gl0GugVN1EQWshSwrHRSj5CRkxQCyFqtQpGYGkWFKsq3MyiXFL83CUEuoReZm7ZHbFazLJFdMYXYyd61PRBN8VMxPWrU_e-k0wXXFrkimWse03xTSktmltm9Endwg_kj59eI8X5Kwxu-gmvzomy_nd2-yhXDzfP86mi9JykKmshENYI5PUcgkrrFDiChQiF4iMMwsMm_yWpFCt1rYRDVOSO1U5pIpLx8fkasjdB_9xcDHprT-EPp_UUNe0plwIyC4YXDb4GINr9D60nQlfGqg-dqeH7nTuTh-70zwzbGBi9vYbF_4k_wt9A5wRb0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880803441</pqid></control><display><type>article</type><title>Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks</title><source>SpringerLink Journals</source><creator>Yılmaz, Ersen</creator><creatorcontrib>Yılmaz, Ersen</creatorcontrib><description>Cardiotocography is the most widely used method in obstetrics practice for monitoring fetal health status. The main goal of monitoring is early detection of fetal hypoxia. A cardiotocogram is a recording of fetal heart rate and uterine activity signals. The accurate analysis of cardiotocograms is critical for further treatment. Therefore, fetal state assessment using machine learning methods from cardiotocogram data has received significant attention in the literature. In this paper, a comparative study of fetal state assessment is presented by using three artificial neural network models, namely the multilayer perceptron neural network, probabilistic neural network, and generalized regression neural network. The performances of the models are evaluated using publicly available cardiotocogram data by running a tenfold cross-validation procedure. The models’ performances are compared in terms of overall classification accuracy. For further analysis, receiver operation characteristic analysis and the cobweb representation technique are used.</description><identifier>ISSN: 1609-0985</identifier><identifier>EISSN: 2199-4757</identifier><identifier>DOI: 10.1007/s40846-016-0191-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial neural networks ; Biomedical Engineering and Bioengineering ; Cell Biology ; Classification ; Comparative studies ; Data analysis ; Engineering ; Fetal monitoring ; Fetuses ; Heart rate ; Hypoxia ; Imaging ; Learning algorithms ; Machine learning ; Multilayer perceptrons ; Neural networks ; Obstetrics ; Original Article ; Radiology ; Regression analysis ; Statistical analysis ; Telemedicine ; Uterus</subject><ispartof>Journal of medical and biological engineering, 2016-12, Vol.36 (6), p.820-832</ispartof><rights>Taiwanese Society of Biomedical Engineering 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-54e91d9260c361b95969b17993499232c129f4086015bdcf4f2763e75e90736e3</citedby><cites>FETCH-LOGICAL-c316t-54e91d9260c361b95969b17993499232c129f4086015bdcf4f2763e75e90736e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40846-016-0191-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40846-016-0191-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yılmaz, Ersen</creatorcontrib><title>Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks</title><title>Journal of medical and biological engineering</title><addtitle>J. Med. Biol. Eng</addtitle><description>Cardiotocography is the most widely used method in obstetrics practice for monitoring fetal health status. The main goal of monitoring is early detection of fetal hypoxia. A cardiotocogram is a recording of fetal heart rate and uterine activity signals. The accurate analysis of cardiotocograms is critical for further treatment. Therefore, fetal state assessment using machine learning methods from cardiotocogram data has received significant attention in the literature. In this paper, a comparative study of fetal state assessment is presented by using three artificial neural network models, namely the multilayer perceptron neural network, probabilistic neural network, and generalized regression neural network. The performances of the models are evaluated using publicly available cardiotocogram data by running a tenfold cross-validation procedure. The models’ performances are compared in terms of overall classification accuracy. For further analysis, receiver operation characteristic analysis and the cobweb representation technique are used.</description><subject>Artificial neural networks</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Cell Biology</subject><subject>Classification</subject><subject>Comparative studies</subject><subject>Data analysis</subject><subject>Engineering</subject><subject>Fetal monitoring</subject><subject>Fetuses</subject><subject>Heart rate</subject><subject>Hypoxia</subject><subject>Imaging</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Obstetrics</subject><subject>Original Article</subject><subject>Radiology</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Telemedicine</subject><subject>Uterus</subject><issn>1609-0985</issn><issn>2199-4757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWGp_gLcFz6uZJJvsHEu1KhQVtOeQptmytbupSYr4701dD14cGN7lfW-YR8gl0GugVN1EQWshSwrHRSj5CRkxQCyFqtQpGYGkWFKsq3MyiXFL83CUEuoReZm7ZHbFazLJFdMYXYyd61PRBN8VMxPWrU_e-k0wXXFrkimWse03xTSktmltm9Endwg_kj59eI8X5Kwxu-gmvzomy_nd2-yhXDzfP86mi9JykKmshENYI5PUcgkrrFDiChQiF4iMMwsMm_yWpFCt1rYRDVOSO1U5pIpLx8fkasjdB_9xcDHprT-EPp_UUNe0plwIyC4YXDb4GINr9D60nQlfGqg-dqeH7nTuTh-70zwzbGBi9vYbF_4k_wt9A5wRb0g</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Yılmaz, Ersen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20161201</creationdate><title>Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks</title><author>Yılmaz, Ersen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-54e91d9260c361b95969b17993499232c129f4086015bdcf4f2763e75e90736e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial neural networks</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Cell Biology</topic><topic>Classification</topic><topic>Comparative studies</topic><topic>Data analysis</topic><topic>Engineering</topic><topic>Fetal monitoring</topic><topic>Fetuses</topic><topic>Heart rate</topic><topic>Hypoxia</topic><topic>Imaging</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Obstetrics</topic><topic>Original Article</topic><topic>Radiology</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Telemedicine</topic><topic>Uterus</topic><toplevel>online_resources</toplevel><creatorcontrib>Yılmaz, Ersen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Journal of medical and biological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yılmaz, Ersen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks</atitle><jtitle>Journal of medical and biological engineering</jtitle><stitle>J. Med. Biol. Eng</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>36</volume><issue>6</issue><spage>820</spage><epage>832</epage><pages>820-832</pages><issn>1609-0985</issn><eissn>2199-4757</eissn><abstract>Cardiotocography is the most widely used method in obstetrics practice for monitoring fetal health status. The main goal of monitoring is early detection of fetal hypoxia. A cardiotocogram is a recording of fetal heart rate and uterine activity signals. The accurate analysis of cardiotocograms is critical for further treatment. Therefore, fetal state assessment using machine learning methods from cardiotocogram data has received significant attention in the literature. In this paper, a comparative study of fetal state assessment is presented by using three artificial neural network models, namely the multilayer perceptron neural network, probabilistic neural network, and generalized regression neural network. The performances of the models are evaluated using publicly available cardiotocogram data by running a tenfold cross-validation procedure. The models’ performances are compared in terms of overall classification accuracy. For further analysis, receiver operation characteristic analysis and the cobweb representation technique are used.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40846-016-0191-3</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1609-0985 |
ispartof | Journal of medical and biological engineering, 2016-12, Vol.36 (6), p.820-832 |
issn | 1609-0985 2199-4757 |
language | eng |
recordid | cdi_proquest_journals_1880803441 |
source | SpringerLink Journals |
subjects | Artificial neural networks Biomedical Engineering and Bioengineering Cell Biology Classification Comparative studies Data analysis Engineering Fetal monitoring Fetuses Heart rate Hypoxia Imaging Learning algorithms Machine learning Multilayer perceptrons Neural networks Obstetrics Original Article Radiology Regression analysis Statistical analysis Telemedicine Uterus |
title | Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fetal%20State%20Assessment%20from%20Cardiotocogram%20Data%20Using%20Artificial%20Neural%20Networks&rft.jtitle=Journal%20of%20medical%20and%20biological%20engineering&rft.au=Y%C4%B1lmaz,%20Ersen&rft.date=2016-12-01&rft.volume=36&rft.issue=6&rft.spage=820&rft.epage=832&rft.pages=820-832&rft.issn=1609-0985&rft.eissn=2199-4757&rft_id=info:doi/10.1007/s40846-016-0191-3&rft_dat=%3Cproquest_cross%3E1880803441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880803441&rft_id=info:pmid/&rfr_iscdi=true |