Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks

Cardiotocography is the most widely used method in obstetrics practice for monitoring fetal health status. The main goal of monitoring is early detection of fetal hypoxia. A cardiotocogram is a recording of fetal heart rate and uterine activity signals. The accurate analysis of cardiotocograms is cr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medical and biological engineering 2016-12, Vol.36 (6), p.820-832
1. Verfasser: Yılmaz, Ersen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 832
container_issue 6
container_start_page 820
container_title Journal of medical and biological engineering
container_volume 36
creator Yılmaz, Ersen
description Cardiotocography is the most widely used method in obstetrics practice for monitoring fetal health status. The main goal of monitoring is early detection of fetal hypoxia. A cardiotocogram is a recording of fetal heart rate and uterine activity signals. The accurate analysis of cardiotocograms is critical for further treatment. Therefore, fetal state assessment using machine learning methods from cardiotocogram data has received significant attention in the literature. In this paper, a comparative study of fetal state assessment is presented by using three artificial neural network models, namely the multilayer perceptron neural network, probabilistic neural network, and generalized regression neural network. The performances of the models are evaluated using publicly available cardiotocogram data by running a tenfold cross-validation procedure. The models’ performances are compared in terms of overall classification accuracy. For further analysis, receiver operation characteristic analysis and the cobweb representation technique are used.
doi_str_mv 10.1007/s40846-016-0191-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880803441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880803441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-54e91d9260c361b95969b17993499232c129f4086015bdcf4f2763e75e90736e3</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWGp_gLcFz6uZJJvsHEu1KhQVtOeQptmytbupSYr4701dD14cGN7lfW-YR8gl0GugVN1EQWshSwrHRSj5CRkxQCyFqtQpGYGkWFKsq3MyiXFL83CUEuoReZm7ZHbFazLJFdMYXYyd61PRBN8VMxPWrU_e-k0wXXFrkimWse03xTSktmltm9Endwg_kj59eI8X5Kwxu-gmvzomy_nd2-yhXDzfP86mi9JykKmshENYI5PUcgkrrFDiChQiF4iMMwsMm_yWpFCt1rYRDVOSO1U5pIpLx8fkasjdB_9xcDHprT-EPp_UUNe0plwIyC4YXDb4GINr9D60nQlfGqg-dqeH7nTuTh-70zwzbGBi9vYbF_4k_wt9A5wRb0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880803441</pqid></control><display><type>article</type><title>Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks</title><source>SpringerLink Journals</source><creator>Yılmaz, Ersen</creator><creatorcontrib>Yılmaz, Ersen</creatorcontrib><description>Cardiotocography is the most widely used method in obstetrics practice for monitoring fetal health status. The main goal of monitoring is early detection of fetal hypoxia. A cardiotocogram is a recording of fetal heart rate and uterine activity signals. The accurate analysis of cardiotocograms is critical for further treatment. Therefore, fetal state assessment using machine learning methods from cardiotocogram data has received significant attention in the literature. In this paper, a comparative study of fetal state assessment is presented by using three artificial neural network models, namely the multilayer perceptron neural network, probabilistic neural network, and generalized regression neural network. The performances of the models are evaluated using publicly available cardiotocogram data by running a tenfold cross-validation procedure. The models’ performances are compared in terms of overall classification accuracy. For further analysis, receiver operation characteristic analysis and the cobweb representation technique are used.</description><identifier>ISSN: 1609-0985</identifier><identifier>EISSN: 2199-4757</identifier><identifier>DOI: 10.1007/s40846-016-0191-3</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Artificial neural networks ; Biomedical Engineering and Bioengineering ; Cell Biology ; Classification ; Comparative studies ; Data analysis ; Engineering ; Fetal monitoring ; Fetuses ; Heart rate ; Hypoxia ; Imaging ; Learning algorithms ; Machine learning ; Multilayer perceptrons ; Neural networks ; Obstetrics ; Original Article ; Radiology ; Regression analysis ; Statistical analysis ; Telemedicine ; Uterus</subject><ispartof>Journal of medical and biological engineering, 2016-12, Vol.36 (6), p.820-832</ispartof><rights>Taiwanese Society of Biomedical Engineering 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-54e91d9260c361b95969b17993499232c129f4086015bdcf4f2763e75e90736e3</citedby><cites>FETCH-LOGICAL-c316t-54e91d9260c361b95969b17993499232c129f4086015bdcf4f2763e75e90736e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40846-016-0191-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40846-016-0191-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yılmaz, Ersen</creatorcontrib><title>Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks</title><title>Journal of medical and biological engineering</title><addtitle>J. Med. Biol. Eng</addtitle><description>Cardiotocography is the most widely used method in obstetrics practice for monitoring fetal health status. The main goal of monitoring is early detection of fetal hypoxia. A cardiotocogram is a recording of fetal heart rate and uterine activity signals. The accurate analysis of cardiotocograms is critical for further treatment. Therefore, fetal state assessment using machine learning methods from cardiotocogram data has received significant attention in the literature. In this paper, a comparative study of fetal state assessment is presented by using three artificial neural network models, namely the multilayer perceptron neural network, probabilistic neural network, and generalized regression neural network. The performances of the models are evaluated using publicly available cardiotocogram data by running a tenfold cross-validation procedure. The models’ performances are compared in terms of overall classification accuracy. For further analysis, receiver operation characteristic analysis and the cobweb representation technique are used.</description><subject>Artificial neural networks</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Cell Biology</subject><subject>Classification</subject><subject>Comparative studies</subject><subject>Data analysis</subject><subject>Engineering</subject><subject>Fetal monitoring</subject><subject>Fetuses</subject><subject>Heart rate</subject><subject>Hypoxia</subject><subject>Imaging</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Multilayer perceptrons</subject><subject>Neural networks</subject><subject>Obstetrics</subject><subject>Original Article</subject><subject>Radiology</subject><subject>Regression analysis</subject><subject>Statistical analysis</subject><subject>Telemedicine</subject><subject>Uterus</subject><issn>1609-0985</issn><issn>2199-4757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWGp_gLcFz6uZJJvsHEu1KhQVtOeQptmytbupSYr4701dD14cGN7lfW-YR8gl0GugVN1EQWshSwrHRSj5CRkxQCyFqtQpGYGkWFKsq3MyiXFL83CUEuoReZm7ZHbFazLJFdMYXYyd61PRBN8VMxPWrU_e-k0wXXFrkimWse03xTSktmltm9Endwg_kj59eI8X5Kwxu-gmvzomy_nd2-yhXDzfP86mi9JykKmshENYI5PUcgkrrFDiChQiF4iMMwsMm_yWpFCt1rYRDVOSO1U5pIpLx8fkasjdB_9xcDHprT-EPp_UUNe0plwIyC4YXDb4GINr9D60nQlfGqg-dqeH7nTuTh-70zwzbGBi9vYbF_4k_wt9A5wRb0g</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Yılmaz, Ersen</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope></search><sort><creationdate>20161201</creationdate><title>Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks</title><author>Yılmaz, Ersen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-54e91d9260c361b95969b17993499232c129f4086015bdcf4f2763e75e90736e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Artificial neural networks</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Cell Biology</topic><topic>Classification</topic><topic>Comparative studies</topic><topic>Data analysis</topic><topic>Engineering</topic><topic>Fetal monitoring</topic><topic>Fetuses</topic><topic>Heart rate</topic><topic>Hypoxia</topic><topic>Imaging</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Multilayer perceptrons</topic><topic>Neural networks</topic><topic>Obstetrics</topic><topic>Original Article</topic><topic>Radiology</topic><topic>Regression analysis</topic><topic>Statistical analysis</topic><topic>Telemedicine</topic><topic>Uterus</topic><toplevel>online_resources</toplevel><creatorcontrib>Yılmaz, Ersen</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Journal of medical and biological engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yılmaz, Ersen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks</atitle><jtitle>Journal of medical and biological engineering</jtitle><stitle>J. Med. Biol. Eng</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>36</volume><issue>6</issue><spage>820</spage><epage>832</epage><pages>820-832</pages><issn>1609-0985</issn><eissn>2199-4757</eissn><abstract>Cardiotocography is the most widely used method in obstetrics practice for monitoring fetal health status. The main goal of monitoring is early detection of fetal hypoxia. A cardiotocogram is a recording of fetal heart rate and uterine activity signals. The accurate analysis of cardiotocograms is critical for further treatment. Therefore, fetal state assessment using machine learning methods from cardiotocogram data has received significant attention in the literature. In this paper, a comparative study of fetal state assessment is presented by using three artificial neural network models, namely the multilayer perceptron neural network, probabilistic neural network, and generalized regression neural network. The performances of the models are evaluated using publicly available cardiotocogram data by running a tenfold cross-validation procedure. The models’ performances are compared in terms of overall classification accuracy. For further analysis, receiver operation characteristic analysis and the cobweb representation technique are used.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40846-016-0191-3</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1609-0985
ispartof Journal of medical and biological engineering, 2016-12, Vol.36 (6), p.820-832
issn 1609-0985
2199-4757
language eng
recordid cdi_proquest_journals_1880803441
source SpringerLink Journals
subjects Artificial neural networks
Biomedical Engineering and Bioengineering
Cell Biology
Classification
Comparative studies
Data analysis
Engineering
Fetal monitoring
Fetuses
Heart rate
Hypoxia
Imaging
Learning algorithms
Machine learning
Multilayer perceptrons
Neural networks
Obstetrics
Original Article
Radiology
Regression analysis
Statistical analysis
Telemedicine
Uterus
title Fetal State Assessment from Cardiotocogram Data Using Artificial Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T06%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fetal%20State%20Assessment%20from%20Cardiotocogram%20Data%20Using%20Artificial%20Neural%20Networks&rft.jtitle=Journal%20of%20medical%20and%20biological%20engineering&rft.au=Y%C4%B1lmaz,%20Ersen&rft.date=2016-12-01&rft.volume=36&rft.issue=6&rft.spage=820&rft.epage=832&rft.pages=820-832&rft.issn=1609-0985&rft.eissn=2199-4757&rft_id=info:doi/10.1007/s40846-016-0191-3&rft_dat=%3Cproquest_cross%3E1880803441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880803441&rft_id=info:pmid/&rfr_iscdi=true