Diophantine equations concerning balancing and Lucas balancing numbers

In this paper, we consider the sequence of balancing and Lucas balancing numbers. The balancing numbers B n are given by the recurrence B n = 6 B n - 1 - B n - 2 with initial conditions B 0 = 0 , B 1 = 1 and its associated Lucas balancing numbers C n are given by the recurrence C n = 6 C n - 1 - C n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2017, Vol.108 (1), p.29-43
Hauptverfasser: Dey, Pallab Kanti, Rout, Sudhansu Sekhar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 43
container_issue 1
container_start_page 29
container_title Archiv der Mathematik
container_volume 108
creator Dey, Pallab Kanti
Rout, Sudhansu Sekhar
description In this paper, we consider the sequence of balancing and Lucas balancing numbers. The balancing numbers B n are given by the recurrence B n = 6 B n - 1 - B n - 2 with initial conditions B 0 = 0 , B 1 = 1 and its associated Lucas balancing numbers C n are given by the recurrence C n = 6 C n - 1 - C n - 2 with initial conditions C 0 = 1 , C 1 = 3 . First we find the perfect powers in the sequence of balancing and Lucas balancing numbers. We also identify those Lucas balancing numbers which are products of a power of 3 and a perfect power. Using this property of Lucas balancing numbers, we solve a conjecture regarding the non-existence of positive integral solution ( x , y ) for the Diophantine equation 2 x 2 + 1 = 3 b y m for any even positive integers b and m with m > 2 , given in (Int J Number Theory 11:1259–1274, 2015 ). Also we prove that the Diophantine equations B n B n + d … B n + ( k - 1 ) d = y m and C n C n + d … C n + ( k - 1 ) d = y m have no solution for any positive integers n , d , k , y , and m with m ≥ 2 , y ≥ 2 and gcd ( n , d ) = 1 .
doi_str_mv 10.1007/s00013-016-0994-z
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880795006</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880795006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-63aae4fc2f0a63682a4e3c82cd57882e4e4891b20edc264de463b4292d70586d3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMRvOH3XsERUKSJVYQGKzHOdSUrVOaycD_fW4CkMXpjvdPe-d9BByy-CeAZQPCQCYoMAUBWMkPZyRCZMcqDZCn5NJXguqtfm6JFcprTPMdWkmZPHUdrtvF_o2YIH7wfVtF1Lhu-AxhjasisptXPDHzoW6WA7epZNZGLYVxnRNLhq3SXjzV6fkc_H8MX-ly_eXt_njknrBVE-VcA5l43kDTgmluZMovOa-npVac5QotWEVB6w9V7JGqUQlueF1CTOtajEld-PdXez2A6berrshhvzSMq2hNDMAlSk2Uj52KUVs7C62Wxd_LAN71GVHXTbrskdd9pAzfMykzIYVxpPL_4Z-AcgubcY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880795006</pqid></control><display><type>article</type><title>Diophantine equations concerning balancing and Lucas balancing numbers</title><source>SpringerNature Journals</source><creator>Dey, Pallab Kanti ; Rout, Sudhansu Sekhar</creator><creatorcontrib>Dey, Pallab Kanti ; Rout, Sudhansu Sekhar</creatorcontrib><description>In this paper, we consider the sequence of balancing and Lucas balancing numbers. The balancing numbers B n are given by the recurrence B n = 6 B n - 1 - B n - 2 with initial conditions B 0 = 0 , B 1 = 1 and its associated Lucas balancing numbers C n are given by the recurrence C n = 6 C n - 1 - C n - 2 with initial conditions C 0 = 1 , C 1 = 3 . First we find the perfect powers in the sequence of balancing and Lucas balancing numbers. We also identify those Lucas balancing numbers which are products of a power of 3 and a perfect power. Using this property of Lucas balancing numbers, we solve a conjecture regarding the non-existence of positive integral solution ( x , y ) for the Diophantine equation 2 x 2 + 1 = 3 b y m for any even positive integers b and m with m &gt; 2 , given in (Int J Number Theory 11:1259–1274, 2015 ). Also we prove that the Diophantine equations B n B n + d … B n + ( k - 1 ) d = y m and C n C n + d … C n + ( k - 1 ) d = y m have no solution for any positive integers n , d , k , y , and m with m ≥ 2 , y ≥ 2 and gcd ( n , d ) = 1 .</description><identifier>ISSN: 0003-889X</identifier><identifier>EISSN: 1420-8938</identifier><identifier>DOI: 10.1007/s00013-016-0994-z</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Diophantine equation ; Initial conditions ; Integers ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Number theory ; Numbers</subject><ispartof>Archiv der Mathematik, 2017, Vol.108 (1), p.29-43</ispartof><rights>Springer International Publishing 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-63aae4fc2f0a63682a4e3c82cd57882e4e4891b20edc264de463b4292d70586d3</citedby><cites>FETCH-LOGICAL-c316t-63aae4fc2f0a63682a4e3c82cd57882e4e4891b20edc264de463b4292d70586d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00013-016-0994-z$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00013-016-0994-z$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27928,27929,41492,42561,51323</link.rule.ids></links><search><creatorcontrib>Dey, Pallab Kanti</creatorcontrib><creatorcontrib>Rout, Sudhansu Sekhar</creatorcontrib><title>Diophantine equations concerning balancing and Lucas balancing numbers</title><title>Archiv der Mathematik</title><addtitle>Arch. Math</addtitle><description>In this paper, we consider the sequence of balancing and Lucas balancing numbers. The balancing numbers B n are given by the recurrence B n = 6 B n - 1 - B n - 2 with initial conditions B 0 = 0 , B 1 = 1 and its associated Lucas balancing numbers C n are given by the recurrence C n = 6 C n - 1 - C n - 2 with initial conditions C 0 = 1 , C 1 = 3 . First we find the perfect powers in the sequence of balancing and Lucas balancing numbers. We also identify those Lucas balancing numbers which are products of a power of 3 and a perfect power. Using this property of Lucas balancing numbers, we solve a conjecture regarding the non-existence of positive integral solution ( x , y ) for the Diophantine equation 2 x 2 + 1 = 3 b y m for any even positive integers b and m with m &gt; 2 , given in (Int J Number Theory 11:1259–1274, 2015 ). Also we prove that the Diophantine equations B n B n + d … B n + ( k - 1 ) d = y m and C n C n + d … C n + ( k - 1 ) d = y m have no solution for any positive integers n , d , k , y , and m with m ≥ 2 , y ≥ 2 and gcd ( n , d ) = 1 .</description><subject>Diophantine equation</subject><subject>Initial conditions</subject><subject>Integers</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number theory</subject><subject>Numbers</subject><issn>0003-889X</issn><issn>1420-8938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9giMRvOH3XsERUKSJVYQGKzHOdSUrVOaycD_fW4CkMXpjvdPe-d9BByy-CeAZQPCQCYoMAUBWMkPZyRCZMcqDZCn5NJXguqtfm6JFcprTPMdWkmZPHUdrtvF_o2YIH7wfVtF1Lhu-AxhjasisptXPDHzoW6WA7epZNZGLYVxnRNLhq3SXjzV6fkc_H8MX-ly_eXt_njknrBVE-VcA5l43kDTgmluZMovOa-npVac5QotWEVB6w9V7JGqUQlueF1CTOtajEld-PdXez2A6berrshhvzSMq2hNDMAlSk2Uj52KUVs7C62Wxd_LAN71GVHXTbrskdd9pAzfMykzIYVxpPL_4Z-AcgubcY</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Dey, Pallab Kanti</creator><creator>Rout, Sudhansu Sekhar</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Diophantine equations concerning balancing and Lucas balancing numbers</title><author>Dey, Pallab Kanti ; Rout, Sudhansu Sekhar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-63aae4fc2f0a63682a4e3c82cd57882e4e4891b20edc264de463b4292d70586d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Diophantine equation</topic><topic>Initial conditions</topic><topic>Integers</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number theory</topic><topic>Numbers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dey, Pallab Kanti</creatorcontrib><creatorcontrib>Rout, Sudhansu Sekhar</creatorcontrib><collection>CrossRef</collection><jtitle>Archiv der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dey, Pallab Kanti</au><au>Rout, Sudhansu Sekhar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Diophantine equations concerning balancing and Lucas balancing numbers</atitle><jtitle>Archiv der Mathematik</jtitle><stitle>Arch. Math</stitle><date>2017</date><risdate>2017</risdate><volume>108</volume><issue>1</issue><spage>29</spage><epage>43</epage><pages>29-43</pages><issn>0003-889X</issn><eissn>1420-8938</eissn><abstract>In this paper, we consider the sequence of balancing and Lucas balancing numbers. The balancing numbers B n are given by the recurrence B n = 6 B n - 1 - B n - 2 with initial conditions B 0 = 0 , B 1 = 1 and its associated Lucas balancing numbers C n are given by the recurrence C n = 6 C n - 1 - C n - 2 with initial conditions C 0 = 1 , C 1 = 3 . First we find the perfect powers in the sequence of balancing and Lucas balancing numbers. We also identify those Lucas balancing numbers which are products of a power of 3 and a perfect power. Using this property of Lucas balancing numbers, we solve a conjecture regarding the non-existence of positive integral solution ( x , y ) for the Diophantine equation 2 x 2 + 1 = 3 b y m for any even positive integers b and m with m &gt; 2 , given in (Int J Number Theory 11:1259–1274, 2015 ). Also we prove that the Diophantine equations B n B n + d … B n + ( k - 1 ) d = y m and C n C n + d … C n + ( k - 1 ) d = y m have no solution for any positive integers n , d , k , y , and m with m ≥ 2 , y ≥ 2 and gcd ( n , d ) = 1 .</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00013-016-0994-z</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-889X
ispartof Archiv der Mathematik, 2017, Vol.108 (1), p.29-43
issn 0003-889X
1420-8938
language eng
recordid cdi_proquest_journals_1880795006
source SpringerNature Journals
subjects Diophantine equation
Initial conditions
Integers
Mathematical analysis
Mathematics
Mathematics and Statistics
Number theory
Numbers
title Diophantine equations concerning balancing and Lucas balancing numbers
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T11%3A54%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Diophantine%20equations%20concerning%20balancing%20and%20Lucas%20balancing%20numbers&rft.jtitle=Archiv%20der%20Mathematik&rft.au=Dey,%20Pallab%20Kanti&rft.date=2017&rft.volume=108&rft.issue=1&rft.spage=29&rft.epage=43&rft.pages=29-43&rft.issn=0003-889X&rft.eissn=1420-8938&rft_id=info:doi/10.1007/s00013-016-0994-z&rft_dat=%3Cproquest_cross%3E1880795006%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880795006&rft_id=info:pmid/&rfr_iscdi=true