On finite groups with large degrees of irreducible character
Let G be a finite nontrivial group with an irreducible complex character χ of degree d = χ (1). According to the orthogonality relation, the sum of the squared degrees of irreducible characters of G is the order of G . N. Snyder proved that, if G = d ( d + e ), then the order of the group G is bound...
Gespeichert in:
Veröffentlicht in: | Automatic control and computer sciences 2016, Vol.50 (7), p.497-509 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 509 |
---|---|
container_issue | 7 |
container_start_page | 497 |
container_title | Automatic control and computer sciences |
container_volume | 50 |
creator | Kazarin, L. S. Poiseeva, S. S. |
description | Let G be a finite nontrivial group with an irreducible complex character
χ
of degree
d
=
χ
(1). According to the orthogonality relation, the sum of the squared degrees of irreducible characters of
G
is the order of
G
. N. Snyder proved that, if
G
=
d
(
d
+
e
), then the order of the group
G
is bounded in terms of e for
e
> 1. Y. Berkovich demonstrated that, in the case
e
= 1, the group
G
is Frobenius with the complement of order
d
. This paper studies a finite nontrivial group
G
with an irreducible complex character Θ such that
G
≤ 2Θ(1)
2
and Θ(1) =
pq
where
p
and
q
are different primes. In this case, we have shown that
G
is a solvable group with an Abelian normal subgroup
K
of index
pq
. Using the classification of finite simple groups, we have established that the simple non-Abelian group, the order of which is divisible by the prime
p
and not greater than 2
p
4
is isomorphic to one of the following groups:
L
2
(
q
),
L
3
(
q
),
U
3
(
q
),
S
z
(8),
A
7
,
M
11
, and
J
1
. |
doi_str_mv | 10.3103/S0146411616070117 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880794024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880794024</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-621c8cd9632ee8fb51dbeaa11ee92cfad5f7eff208dba0f101837e6f1d42fb343</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8Bz9WZpE2z4EUWv0DYgwreSppOul3Wdp20iP_elvUgiKc5vM_zDrxCnCNcagR99QyYmhTRoIEcEPMDMcMsswmCfTsUsylOpvxYnMS4ARgza2bietXK0LRNT7LmbthF-dn0a7l1XJOsqGaiKLsgG2aqBt-UW5J-7dj5nvhUHAW3jXT2c-fi9e72ZfmQPK3uH5c3T4nXaPrEKPTWVwujFZENZYZVSc4hEi2UD67KQk4hKLBV6SAgoNU5mYBVqkKpUz0XF_veHXcfA8W-2HQDt-PLAq2FfJGCmijcU567GJlCsePm3fFXgVBMIxV_RhodtXfiyLY18a_mf6VvZXlo0Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880794024</pqid></control><display><type>article</type><title>On finite groups with large degrees of irreducible character</title><source>Springer Nature - Complete Springer Journals</source><creator>Kazarin, L. S. ; Poiseeva, S. S.</creator><creatorcontrib>Kazarin, L. S. ; Poiseeva, S. S.</creatorcontrib><description>Let G be a finite nontrivial group with an irreducible complex character
χ
of degree
d
=
χ
(1). According to the orthogonality relation, the sum of the squared degrees of irreducible characters of
G
is the order of
G
. N. Snyder proved that, if
G
=
d
(
d
+
e
), then the order of the group
G
is bounded in terms of e for
e
> 1. Y. Berkovich demonstrated that, in the case
e
= 1, the group
G
is Frobenius with the complement of order
d
. This paper studies a finite nontrivial group
G
with an irreducible complex character Θ such that
G
≤ 2Θ(1)
2
and Θ(1) =
pq
where
p
and
q
are different primes. In this case, we have shown that
G
is a solvable group with an Abelian normal subgroup
K
of index
pq
. Using the classification of finite simple groups, we have established that the simple non-Abelian group, the order of which is divisible by the prime
p
and not greater than 2
p
4
is isomorphic to one of the following groups:
L
2
(
q
),
L
3
(
q
),
U
3
(
q
),
S
z
(8),
A
7
,
M
11
, and
J
1
.</description><identifier>ISSN: 0146-4116</identifier><identifier>EISSN: 1558-108X</identifier><identifier>DOI: 10.3103/S0146411616070117</identifier><language>eng</language><publisher>New York: Allerton Press</publisher><subject>Computer Science ; Control Structures and Microprogramming ; Orthogonality</subject><ispartof>Automatic control and computer sciences, 2016, Vol.50 (7), p.497-509</ispartof><rights>Allerton Press, Inc. 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-621c8cd9632ee8fb51dbeaa11ee92cfad5f7eff208dba0f101837e6f1d42fb343</citedby><cites>FETCH-LOGICAL-c316t-621c8cd9632ee8fb51dbeaa11ee92cfad5f7eff208dba0f101837e6f1d42fb343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0146411616070117$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0146411616070117$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Kazarin, L. S.</creatorcontrib><creatorcontrib>Poiseeva, S. S.</creatorcontrib><title>On finite groups with large degrees of irreducible character</title><title>Automatic control and computer sciences</title><addtitle>Aut. Control Comp. Sci</addtitle><description>Let G be a finite nontrivial group with an irreducible complex character
χ
of degree
d
=
χ
(1). According to the orthogonality relation, the sum of the squared degrees of irreducible characters of
G
is the order of
G
. N. Snyder proved that, if
G
=
d
(
d
+
e
), then the order of the group
G
is bounded in terms of e for
e
> 1. Y. Berkovich demonstrated that, in the case
e
= 1, the group
G
is Frobenius with the complement of order
d
. This paper studies a finite nontrivial group
G
with an irreducible complex character Θ such that
G
≤ 2Θ(1)
2
and Θ(1) =
pq
where
p
and
q
are different primes. In this case, we have shown that
G
is a solvable group with an Abelian normal subgroup
K
of index
pq
. Using the classification of finite simple groups, we have established that the simple non-Abelian group, the order of which is divisible by the prime
p
and not greater than 2
p
4
is isomorphic to one of the following groups:
L
2
(
q
),
L
3
(
q
),
U
3
(
q
),
S
z
(8),
A
7
,
M
11
, and
J
1
.</description><subject>Computer Science</subject><subject>Control Structures and Microprogramming</subject><subject>Orthogonality</subject><issn>0146-4116</issn><issn>1558-108X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8Bz9WZpE2z4EUWv0DYgwreSppOul3Wdp20iP_elvUgiKc5vM_zDrxCnCNcagR99QyYmhTRoIEcEPMDMcMsswmCfTsUsylOpvxYnMS4ARgza2bietXK0LRNT7LmbthF-dn0a7l1XJOsqGaiKLsgG2aqBt-UW5J-7dj5nvhUHAW3jXT2c-fi9e72ZfmQPK3uH5c3T4nXaPrEKPTWVwujFZENZYZVSc4hEi2UD67KQk4hKLBV6SAgoNU5mYBVqkKpUz0XF_veHXcfA8W-2HQDt-PLAq2FfJGCmijcU567GJlCsePm3fFXgVBMIxV_RhodtXfiyLY18a_mf6VvZXlo0Q</recordid><startdate>2016</startdate><enddate>2016</enddate><creator>Kazarin, L. S.</creator><creator>Poiseeva, S. S.</creator><general>Allerton Press</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2016</creationdate><title>On finite groups with large degrees of irreducible character</title><author>Kazarin, L. S. ; Poiseeva, S. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-621c8cd9632ee8fb51dbeaa11ee92cfad5f7eff208dba0f101837e6f1d42fb343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computer Science</topic><topic>Control Structures and Microprogramming</topic><topic>Orthogonality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kazarin, L. S.</creatorcontrib><creatorcontrib>Poiseeva, S. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Automatic control and computer sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kazarin, L. S.</au><au>Poiseeva, S. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On finite groups with large degrees of irreducible character</atitle><jtitle>Automatic control and computer sciences</jtitle><stitle>Aut. Control Comp. Sci</stitle><date>2016</date><risdate>2016</risdate><volume>50</volume><issue>7</issue><spage>497</spage><epage>509</epage><pages>497-509</pages><issn>0146-4116</issn><eissn>1558-108X</eissn><abstract>Let G be a finite nontrivial group with an irreducible complex character
χ
of degree
d
=
χ
(1). According to the orthogonality relation, the sum of the squared degrees of irreducible characters of
G
is the order of
G
. N. Snyder proved that, if
G
=
d
(
d
+
e
), then the order of the group
G
is bounded in terms of e for
e
> 1. Y. Berkovich demonstrated that, in the case
e
= 1, the group
G
is Frobenius with the complement of order
d
. This paper studies a finite nontrivial group
G
with an irreducible complex character Θ such that
G
≤ 2Θ(1)
2
and Θ(1) =
pq
where
p
and
q
are different primes. In this case, we have shown that
G
is a solvable group with an Abelian normal subgroup
K
of index
pq
. Using the classification of finite simple groups, we have established that the simple non-Abelian group, the order of which is divisible by the prime
p
and not greater than 2
p
4
is isomorphic to one of the following groups:
L
2
(
q
),
L
3
(
q
),
U
3
(
q
),
S
z
(8),
A
7
,
M
11
, and
J
1
.</abstract><cop>New York</cop><pub>Allerton Press</pub><doi>10.3103/S0146411616070117</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0146-4116 |
ispartof | Automatic control and computer sciences, 2016, Vol.50 (7), p.497-509 |
issn | 0146-4116 1558-108X |
language | eng |
recordid | cdi_proquest_journals_1880794024 |
source | Springer Nature - Complete Springer Journals |
subjects | Computer Science Control Structures and Microprogramming Orthogonality |
title | On finite groups with large degrees of irreducible character |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T16%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20finite%20groups%20with%20large%20degrees%20of%20irreducible%20character&rft.jtitle=Automatic%20control%20and%20computer%20sciences&rft.au=Kazarin,%20L.%20S.&rft.date=2016&rft.volume=50&rft.issue=7&rft.spage=497&rft.epage=509&rft.pages=497-509&rft.issn=0146-4116&rft.eissn=1558-108X&rft_id=info:doi/10.3103/S0146411616070117&rft_dat=%3Cproquest_cross%3E1880794024%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880794024&rft_id=info:pmid/&rfr_iscdi=true |