Minimisation of total tardiness for identical parallel machine scheduling using genetic algorithm
In recent years research on parallel machine scheduling has received an increased attention. This paper considers minimisation of total tardiness for scheduling of n jobs on a set of m parallel machines. A spread-sheet-based genetic algorithm (GA) approach is proposed for the problem. The proposed a...
Gespeichert in:
Veröffentlicht in: | Sadhana (Bangalore) 2017, Vol.42 (1), p.11-21 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 21 |
---|---|
container_issue | 1 |
container_start_page | 11 |
container_title | Sadhana (Bangalore) |
container_volume | 42 |
creator | CHAUDHRY, IMRAN ALI ELBADAWI, ISAM A Q |
description | In recent years research on parallel machine scheduling has received an increased attention. This paper considers minimisation of total tardiness for scheduling of
n
jobs on a set of
m
parallel machines. A spread-sheet-based genetic algorithm (GA) approach is proposed for the problem. The proposed approach is a domain-independent general purpose approach, which has been effectively used to solve this class of problem. The performance of GA is compared with branch and bound and particle swarm optimisation approaches. Two set of problems having 20 and 25 jobs with number of parallel machines equal to 2, 4, 6, 8 and 10 are solved with the proposed approach. Each combination of number of jobs and machines consists of 125 benchmark problems; thus a total for 2250 problems are solved. The results obtained by the proposed approach are comparable with two earlier approaches. It is also demonstrated that a simple GA can be used to produce results that are comparable with problem-specific approach. The proposed approach can also be used to optimise any objective function without changing the basic GA routine. |
doi_str_mv | 10.1007/s12046-016-0575-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880793875</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880793875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-3fa92392b1b34e441880d5ef909feee30010b87c27229278f66f7b022c29487d3</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19WbpO1tliK-YMSNrkPaJp0MbTMm7cJ_b0pduHFxH1y-cy4cQq4Z3DIAvIuMQ15mwFIVWGR4QjYgUWRYIp6mnRdlxnMpz8lFjAcAjlCJDdFvbnSDi3pyfqTe0slPuqeTDq0bTYzU-kBda8bJNel-1EH3venpoJt9Amhs9qadezd2dI5L78xoEkt13_ngpv1wSc6s7qO5-p1b8vn0-PHwku3en18f7ndZkwNOmbBaciF5zWqRmzxnVQVtYawEaY0xAoBBXWHDkXPJsbJlabEGzhsu8wpbsSU3q-8x-K_ZxEkd_BzG9FItXihFhUWi2Eo1wccYjFXH4AYdvhUDtSSp1iRVSlItSSpMGr5qYmLHzoQ_zv-KfgCQWHbG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880793875</pqid></control><display><type>article</type><title>Minimisation of total tardiness for identical parallel machine scheduling using genetic algorithm</title><source>Indian Academy of Sciences</source><source>SpringerLink Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>CHAUDHRY, IMRAN ALI ; ELBADAWI, ISAM A Q</creator><creatorcontrib>CHAUDHRY, IMRAN ALI ; ELBADAWI, ISAM A Q</creatorcontrib><description>In recent years research on parallel machine scheduling has received an increased attention. This paper considers minimisation of total tardiness for scheduling of
n
jobs on a set of
m
parallel machines. A spread-sheet-based genetic algorithm (GA) approach is proposed for the problem. The proposed approach is a domain-independent general purpose approach, which has been effectively used to solve this class of problem. The performance of GA is compared with branch and bound and particle swarm optimisation approaches. Two set of problems having 20 and 25 jobs with number of parallel machines equal to 2, 4, 6, 8 and 10 are solved with the proposed approach. Each combination of number of jobs and machines consists of 125 benchmark problems; thus a total for 2250 problems are solved. The results obtained by the proposed approach are comparable with two earlier approaches. It is also demonstrated that a simple GA can be used to produce results that are comparable with problem-specific approach. The proposed approach can also be used to optimise any objective function without changing the basic GA routine.</description><identifier>ISSN: 0256-2499</identifier><identifier>EISSN: 0973-7677</identifier><identifier>DOI: 10.1007/s12046-016-0575-7</identifier><language>eng</language><publisher>New Delhi: Springer India</publisher><subject>Engineering ; Genetic algorithms ; Lateness ; Particle swarm optimization ; Scheduling</subject><ispartof>Sadhana (Bangalore), 2017, Vol.42 (1), p.11-21</ispartof><rights>Indian Academy of Sciences 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-3fa92392b1b34e441880d5ef909feee30010b87c27229278f66f7b022c29487d3</citedby><cites>FETCH-LOGICAL-c407t-3fa92392b1b34e441880d5ef909feee30010b87c27229278f66f7b022c29487d3</cites><orcidid>0000-0001-6726-0753</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12046-016-0575-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12046-016-0575-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>CHAUDHRY, IMRAN ALI</creatorcontrib><creatorcontrib>ELBADAWI, ISAM A Q</creatorcontrib><title>Minimisation of total tardiness for identical parallel machine scheduling using genetic algorithm</title><title>Sadhana (Bangalore)</title><addtitle>Sādhanā</addtitle><description>In recent years research on parallel machine scheduling has received an increased attention. This paper considers minimisation of total tardiness for scheduling of
n
jobs on a set of
m
parallel machines. A spread-sheet-based genetic algorithm (GA) approach is proposed for the problem. The proposed approach is a domain-independent general purpose approach, which has been effectively used to solve this class of problem. The performance of GA is compared with branch and bound and particle swarm optimisation approaches. Two set of problems having 20 and 25 jobs with number of parallel machines equal to 2, 4, 6, 8 and 10 are solved with the proposed approach. Each combination of number of jobs and machines consists of 125 benchmark problems; thus a total for 2250 problems are solved. The results obtained by the proposed approach are comparable with two earlier approaches. It is also demonstrated that a simple GA can be used to produce results that are comparable with problem-specific approach. The proposed approach can also be used to optimise any objective function without changing the basic GA routine.</description><subject>Engineering</subject><subject>Genetic algorithms</subject><subject>Lateness</subject><subject>Particle swarm optimization</subject><subject>Scheduling</subject><issn>0256-2499</issn><issn>0973-7677</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19WbpO1tliK-YMSNrkPaJp0MbTMm7cJ_b0pduHFxH1y-cy4cQq4Z3DIAvIuMQ15mwFIVWGR4QjYgUWRYIp6mnRdlxnMpz8lFjAcAjlCJDdFvbnSDi3pyfqTe0slPuqeTDq0bTYzU-kBda8bJNel-1EH3venpoJt9Amhs9qadezd2dI5L78xoEkt13_ngpv1wSc6s7qO5-p1b8vn0-PHwku3en18f7ndZkwNOmbBaciF5zWqRmzxnVQVtYawEaY0xAoBBXWHDkXPJsbJlabEGzhsu8wpbsSU3q-8x-K_ZxEkd_BzG9FItXihFhUWi2Eo1wccYjFXH4AYdvhUDtSSp1iRVSlItSSpMGr5qYmLHzoQ_zv-KfgCQWHbG</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>CHAUDHRY, IMRAN ALI</creator><creator>ELBADAWI, ISAM A Q</creator><general>Springer India</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-6726-0753</orcidid></search><sort><creationdate>2017</creationdate><title>Minimisation of total tardiness for identical parallel machine scheduling using genetic algorithm</title><author>CHAUDHRY, IMRAN ALI ; ELBADAWI, ISAM A Q</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-3fa92392b1b34e441880d5ef909feee30010b87c27229278f66f7b022c29487d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Engineering</topic><topic>Genetic algorithms</topic><topic>Lateness</topic><topic>Particle swarm optimization</topic><topic>Scheduling</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CHAUDHRY, IMRAN ALI</creatorcontrib><creatorcontrib>ELBADAWI, ISAM A Q</creatorcontrib><collection>CrossRef</collection><jtitle>Sadhana (Bangalore)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CHAUDHRY, IMRAN ALI</au><au>ELBADAWI, ISAM A Q</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimisation of total tardiness for identical parallel machine scheduling using genetic algorithm</atitle><jtitle>Sadhana (Bangalore)</jtitle><stitle>Sādhanā</stitle><date>2017</date><risdate>2017</risdate><volume>42</volume><issue>1</issue><spage>11</spage><epage>21</epage><pages>11-21</pages><issn>0256-2499</issn><eissn>0973-7677</eissn><abstract>In recent years research on parallel machine scheduling has received an increased attention. This paper considers minimisation of total tardiness for scheduling of
n
jobs on a set of
m
parallel machines. A spread-sheet-based genetic algorithm (GA) approach is proposed for the problem. The proposed approach is a domain-independent general purpose approach, which has been effectively used to solve this class of problem. The performance of GA is compared with branch and bound and particle swarm optimisation approaches. Two set of problems having 20 and 25 jobs with number of parallel machines equal to 2, 4, 6, 8 and 10 are solved with the proposed approach. Each combination of number of jobs and machines consists of 125 benchmark problems; thus a total for 2250 problems are solved. The results obtained by the proposed approach are comparable with two earlier approaches. It is also demonstrated that a simple GA can be used to produce results that are comparable with problem-specific approach. The proposed approach can also be used to optimise any objective function without changing the basic GA routine.</abstract><cop>New Delhi</cop><pub>Springer India</pub><doi>10.1007/s12046-016-0575-7</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-6726-0753</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0256-2499 |
ispartof | Sadhana (Bangalore), 2017, Vol.42 (1), p.11-21 |
issn | 0256-2499 0973-7677 |
language | eng |
recordid | cdi_proquest_journals_1880793875 |
source | Indian Academy of Sciences; SpringerLink Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Engineering Genetic algorithms Lateness Particle swarm optimization Scheduling |
title | Minimisation of total tardiness for identical parallel machine scheduling using genetic algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T00%3A45%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimisation%20of%20total%20tardiness%20for%20identical%20parallel%20machine%20scheduling%20using%20genetic%20algorithm&rft.jtitle=Sadhana%20(Bangalore)&rft.au=CHAUDHRY,%20IMRAN%20ALI&rft.date=2017&rft.volume=42&rft.issue=1&rft.spage=11&rft.epage=21&rft.pages=11-21&rft.issn=0256-2499&rft.eissn=0973-7677&rft_id=info:doi/10.1007/s12046-016-0575-7&rft_dat=%3Cproquest_cross%3E1880793875%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880793875&rft_id=info:pmid/&rfr_iscdi=true |