A hybrid elitist pareto-based coordinate exchange algorithm for constructing multi-criteria optimal experimental designs

This paper presents a new Pareto-based coordinate exchange algorithm for populating or approximating the true Pareto front for multi-criteria optimal experimental design problems that arise naturally in a range of industrial applications. This heuristic combines an elitist-like operator inspired by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Statistics and computing 2017-03, Vol.27 (2), p.423-437
Hauptverfasser: Cao, Yongtao, Smucker, Byran J., Robinson, Timothy J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 437
container_issue 2
container_start_page 423
container_title Statistics and computing
container_volume 27
creator Cao, Yongtao
Smucker, Byran J.
Robinson, Timothy J.
description This paper presents a new Pareto-based coordinate exchange algorithm for populating or approximating the true Pareto front for multi-criteria optimal experimental design problems that arise naturally in a range of industrial applications. This heuristic combines an elitist-like operator inspired by evolutionary multi-objective optimization algorithms with a coordinate exchange operator that is commonly used to construct optimal designs. Benchmarking results from both a two-dimensional and three-dimensional example demonstrate that the proposed hybrid algorithm can generate highly reliable Pareto fronts with less computational effort than existing procedures in the statistics literature. The proposed algorithm also utilizes a multi-start operator, which makes it readily parallelizable for high performance computing infrastructures.
doi_str_mv 10.1007/s11222-016-9630-9
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880793708</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880793708</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-2704032e1117fa543374b3574b40a84993cfdae4c6668d07e81e70e9a0c1abf43</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWD9-gLeA5-jMJt3sHkvxCwQveg5pdrZN2W7WJIX6743UgxcvMwzzvu8MD2M3CHcIoO8TYlVVArAWbS1BtCdshnMtBUo9P2UzaGsQErU6ZxcpbQEQa6lm7LDgm69V9B2nwWefMp9spBzEyibquAshdn60mTgd3MaOa-J2WIfo82bH-xCLYkw57l3245rv9kP2wpUtRW95mLLf2aFYpzLvaMxl6Cj59Ziu2Flvh0TXv_2SfTw-vC-fxevb08ty8SqcxDqLSoMCWREi6t7OlZRareS8FAW2UW0rXd9ZUq6u66YDTQ2SBmotOLSrXslLdnvMnWL43FPKZhv2cSwnDTYN6FZqaIoKjyoXQ0qRejOVh238MgjmB7A5AjYFsPkBbNriqY6eVLQFTPyT_K_pGxQbgA8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880793708</pqid></control><display><type>article</type><title>A hybrid elitist pareto-based coordinate exchange algorithm for constructing multi-criteria optimal experimental designs</title><source>SpringerLink Journals</source><creator>Cao, Yongtao ; Smucker, Byran J. ; Robinson, Timothy J.</creator><creatorcontrib>Cao, Yongtao ; Smucker, Byran J. ; Robinson, Timothy J.</creatorcontrib><description>This paper presents a new Pareto-based coordinate exchange algorithm for populating or approximating the true Pareto front for multi-criteria optimal experimental design problems that arise naturally in a range of industrial applications. This heuristic combines an elitist-like operator inspired by evolutionary multi-objective optimization algorithms with a coordinate exchange operator that is commonly used to construct optimal designs. Benchmarking results from both a two-dimensional and three-dimensional example demonstrate that the proposed hybrid algorithm can generate highly reliable Pareto fronts with less computational effort than existing procedures in the statistics literature. The proposed algorithm also utilizes a multi-start operator, which makes it readily parallelizable for high performance computing infrastructures.</description><identifier>ISSN: 0960-3174</identifier><identifier>EISSN: 1573-1375</identifier><identifier>DOI: 10.1007/s11222-016-9630-9</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algorithms ; Artificial Intelligence ; Design of experiments ; Elitism ; Evolutionary algorithms ; Exchanging ; Industrial applications ; Mathematics and Statistics ; Multiple criterion ; Multiple objective analysis ; Pareto optimization ; Probability and Statistics in Computer Science ; Statistical Theory and Methods ; Statistics ; Statistics and Computing/Statistics Programs</subject><ispartof>Statistics and computing, 2017-03, Vol.27 (2), p.423-437</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-2704032e1117fa543374b3574b40a84993cfdae4c6668d07e81e70e9a0c1abf43</citedby><cites>FETCH-LOGICAL-c316t-2704032e1117fa543374b3574b40a84993cfdae4c6668d07e81e70e9a0c1abf43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11222-016-9630-9$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11222-016-9630-9$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Cao, Yongtao</creatorcontrib><creatorcontrib>Smucker, Byran J.</creatorcontrib><creatorcontrib>Robinson, Timothy J.</creatorcontrib><title>A hybrid elitist pareto-based coordinate exchange algorithm for constructing multi-criteria optimal experimental designs</title><title>Statistics and computing</title><addtitle>Stat Comput</addtitle><description>This paper presents a new Pareto-based coordinate exchange algorithm for populating or approximating the true Pareto front for multi-criteria optimal experimental design problems that arise naturally in a range of industrial applications. This heuristic combines an elitist-like operator inspired by evolutionary multi-objective optimization algorithms with a coordinate exchange operator that is commonly used to construct optimal designs. Benchmarking results from both a two-dimensional and three-dimensional example demonstrate that the proposed hybrid algorithm can generate highly reliable Pareto fronts with less computational effort than existing procedures in the statistics literature. The proposed algorithm also utilizes a multi-start operator, which makes it readily parallelizable for high performance computing infrastructures.</description><subject>Algorithms</subject><subject>Artificial Intelligence</subject><subject>Design of experiments</subject><subject>Elitism</subject><subject>Evolutionary algorithms</subject><subject>Exchanging</subject><subject>Industrial applications</subject><subject>Mathematics and Statistics</subject><subject>Multiple criterion</subject><subject>Multiple objective analysis</subject><subject>Pareto optimization</subject><subject>Probability and Statistics in Computer Science</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><subject>Statistics and Computing/Statistics Programs</subject><issn>0960-3174</issn><issn>1573-1375</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LAzEQhoMoWD9-gLeA5-jMJt3sHkvxCwQveg5pdrZN2W7WJIX6743UgxcvMwzzvu8MD2M3CHcIoO8TYlVVArAWbS1BtCdshnMtBUo9P2UzaGsQErU6ZxcpbQEQa6lm7LDgm69V9B2nwWefMp9spBzEyibquAshdn60mTgd3MaOa-J2WIfo82bH-xCLYkw57l3245rv9kP2wpUtRW95mLLf2aFYpzLvaMxl6Cj59Ziu2Flvh0TXv_2SfTw-vC-fxevb08ty8SqcxDqLSoMCWREi6t7OlZRareS8FAW2UW0rXd9ZUq6u66YDTQ2SBmotOLSrXslLdnvMnWL43FPKZhv2cSwnDTYN6FZqaIoKjyoXQ0qRejOVh238MgjmB7A5AjYFsPkBbNriqY6eVLQFTPyT_K_pGxQbgA8</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Cao, Yongtao</creator><creator>Smucker, Byran J.</creator><creator>Robinson, Timothy J.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>A hybrid elitist pareto-based coordinate exchange algorithm for constructing multi-criteria optimal experimental designs</title><author>Cao, Yongtao ; Smucker, Byran J. ; Robinson, Timothy J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-2704032e1117fa543374b3574b40a84993cfdae4c6668d07e81e70e9a0c1abf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Artificial Intelligence</topic><topic>Design of experiments</topic><topic>Elitism</topic><topic>Evolutionary algorithms</topic><topic>Exchanging</topic><topic>Industrial applications</topic><topic>Mathematics and Statistics</topic><topic>Multiple criterion</topic><topic>Multiple objective analysis</topic><topic>Pareto optimization</topic><topic>Probability and Statistics in Computer Science</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><topic>Statistics and Computing/Statistics Programs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Yongtao</creatorcontrib><creatorcontrib>Smucker, Byran J.</creatorcontrib><creatorcontrib>Robinson, Timothy J.</creatorcontrib><collection>CrossRef</collection><jtitle>Statistics and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Yongtao</au><au>Smucker, Byran J.</au><au>Robinson, Timothy J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid elitist pareto-based coordinate exchange algorithm for constructing multi-criteria optimal experimental designs</atitle><jtitle>Statistics and computing</jtitle><stitle>Stat Comput</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>27</volume><issue>2</issue><spage>423</spage><epage>437</epage><pages>423-437</pages><issn>0960-3174</issn><eissn>1573-1375</eissn><abstract>This paper presents a new Pareto-based coordinate exchange algorithm for populating or approximating the true Pareto front for multi-criteria optimal experimental design problems that arise naturally in a range of industrial applications. This heuristic combines an elitist-like operator inspired by evolutionary multi-objective optimization algorithms with a coordinate exchange operator that is commonly used to construct optimal designs. Benchmarking results from both a two-dimensional and three-dimensional example demonstrate that the proposed hybrid algorithm can generate highly reliable Pareto fronts with less computational effort than existing procedures in the statistics literature. The proposed algorithm also utilizes a multi-start operator, which makes it readily parallelizable for high performance computing infrastructures.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11222-016-9630-9</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-3174
ispartof Statistics and computing, 2017-03, Vol.27 (2), p.423-437
issn 0960-3174
1573-1375
language eng
recordid cdi_proquest_journals_1880793708
source SpringerLink Journals
subjects Algorithms
Artificial Intelligence
Design of experiments
Elitism
Evolutionary algorithms
Exchanging
Industrial applications
Mathematics and Statistics
Multiple criterion
Multiple objective analysis
Pareto optimization
Probability and Statistics in Computer Science
Statistical Theory and Methods
Statistics
Statistics and Computing/Statistics Programs
title A hybrid elitist pareto-based coordinate exchange algorithm for constructing multi-criteria optimal experimental designs
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T09%3A50%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20elitist%20pareto-based%20coordinate%20exchange%20algorithm%20for%20constructing%20multi-criteria%20optimal%20experimental%20designs&rft.jtitle=Statistics%20and%20computing&rft.au=Cao,%20Yongtao&rft.date=2017-03-01&rft.volume=27&rft.issue=2&rft.spage=423&rft.epage=437&rft.pages=423-437&rft.issn=0960-3174&rft.eissn=1573-1375&rft_id=info:doi/10.1007/s11222-016-9630-9&rft_dat=%3Cproquest_cross%3E1880793708%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880793708&rft_id=info:pmid/&rfr_iscdi=true