Arnold diffusion in a neighborhood of strong resonances
The paper deals with nearly integrable multidimensional a priori unstable Hamiltonian systems. Assuming the Hamilton function is smooth and time-periodic, we study perturbations that are trigonometric polynomials in the “angle” variables in the first approximation. For a generic system in this class...
Gespeichert in:
Veröffentlicht in: | Proceedings of the Steklov Institute of Mathematics 2016-11, Vol.295 (1), p.63-94 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1 |
container_start_page | 63 |
container_title | Proceedings of the Steklov Institute of Mathematics |
container_volume | 295 |
creator | Davletshin, M. N. Treschev, D. V. |
description | The paper deals with nearly integrable multidimensional a priori unstable Hamiltonian systems. Assuming the Hamilton function is smooth and time-periodic, we study perturbations that are trigonometric polynomials in the “angle” variables in the first approximation. For a generic system in this class, we construct a trajectory whose projection on the space of slow variables crosses a small neighborhood of a strong resonance. We also estimate the speed of this crossing. |
doi_str_mv | 10.1134/S0081543816080058 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880792191</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880792191</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-7f1df8c5ff6fa3695b19081782ff196de05c2daeae48295da3bab085c0f686343</originalsourceid><addsrcrecordid>eNp1kM1OwzAQhC0EEqXwANwscQ7sxrFjH6uKP6kSB-AcObG3TVXsYjcH3p5E5YCEOO1h5ptZDWPXCLeIorp7BdAoK6FRgQaQ-oTNUAostAJ5ymaTXEz6ObvIeQtQyboyM1YvUog7x11PNOQ-Bt4Hbnnw_XrTxrSJ0fFIPB9SDGuefI7Bhs7nS3ZGdpf91c-ds_eH-7flU7F6eXxeLlZFJ1AdiprQke4kkSIrlJEtmvGTWpdEaJTzILvSWW99pUsjnRWtbUHLDkhpJSoxZzfH3H2Kn4PPh2YbhxTGyga1htqUaHB04dHVpZhz8tTsU_9h01eD0Ez7NH_2GZnyyOTRG9Y-_Ur-F_oGb9VmSw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880792191</pqid></control><display><type>article</type><title>Arnold diffusion in a neighborhood of strong resonances</title><source>Springer Online Journals Complete</source><creator>Davletshin, M. N. ; Treschev, D. V.</creator><creatorcontrib>Davletshin, M. N. ; Treschev, D. V.</creatorcontrib><description>The paper deals with nearly integrable multidimensional a priori unstable Hamiltonian systems. Assuming the Hamilton function is smooth and time-periodic, we study perturbations that are trigonometric polynomials in the “angle” variables in the first approximation. For a generic system in this class, we construct a trajectory whose projection on the space of slow variables crosses a small neighborhood of a strong resonance. We also estimate the speed of this crossing.</description><identifier>ISSN: 0081-5438</identifier><identifier>EISSN: 1531-8605</identifier><identifier>DOI: 10.1134/S0081543816080058</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Arnold diffusion ; Hamiltonian functions ; Mathematics ; Mathematics and Statistics</subject><ispartof>Proceedings of the Steklov Institute of Mathematics, 2016-11, Vol.295 (1), p.63-94</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science & Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-7f1df8c5ff6fa3695b19081782ff196de05c2daeae48295da3bab085c0f686343</citedby><cites>FETCH-LOGICAL-c316t-7f1df8c5ff6fa3695b19081782ff196de05c2daeae48295da3bab085c0f686343</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0081543816080058$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0081543816080058$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,23909,23910,25118,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Davletshin, M. N.</creatorcontrib><creatorcontrib>Treschev, D. V.</creatorcontrib><title>Arnold diffusion in a neighborhood of strong resonances</title><title>Proceedings of the Steklov Institute of Mathematics</title><addtitle>Proc. Steklov Inst. Math</addtitle><description>The paper deals with nearly integrable multidimensional a priori unstable Hamiltonian systems. Assuming the Hamilton function is smooth and time-periodic, we study perturbations that are trigonometric polynomials in the “angle” variables in the first approximation. For a generic system in this class, we construct a trajectory whose projection on the space of slow variables crosses a small neighborhood of a strong resonance. We also estimate the speed of this crossing.</description><subject>Arnold diffusion</subject><subject>Hamiltonian functions</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>0081-5438</issn><issn>1531-8605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1OwzAQhC0EEqXwANwscQ7sxrFjH6uKP6kSB-AcObG3TVXsYjcH3p5E5YCEOO1h5ptZDWPXCLeIorp7BdAoK6FRgQaQ-oTNUAostAJ5ymaTXEz6ObvIeQtQyboyM1YvUog7x11PNOQ-Bt4Hbnnw_XrTxrSJ0fFIPB9SDGuefI7Bhs7nS3ZGdpf91c-ds_eH-7flU7F6eXxeLlZFJ1AdiprQke4kkSIrlJEtmvGTWpdEaJTzILvSWW99pUsjnRWtbUHLDkhpJSoxZzfH3H2Kn4PPh2YbhxTGyga1htqUaHB04dHVpZhz8tTsU_9h01eD0Ez7NH_2GZnyyOTRG9Y-_Ur-F_oGb9VmSw</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Davletshin, M. N.</creator><creator>Treschev, D. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161101</creationdate><title>Arnold diffusion in a neighborhood of strong resonances</title><author>Davletshin, M. N. ; Treschev, D. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-7f1df8c5ff6fa3695b19081782ff196de05c2daeae48295da3bab085c0f686343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Arnold diffusion</topic><topic>Hamiltonian functions</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Davletshin, M. N.</creatorcontrib><creatorcontrib>Treschev, D. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Davletshin, M. N.</au><au>Treschev, D. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arnold diffusion in a neighborhood of strong resonances</atitle><jtitle>Proceedings of the Steklov Institute of Mathematics</jtitle><stitle>Proc. Steklov Inst. Math</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>295</volume><issue>1</issue><spage>63</spage><epage>94</epage><pages>63-94</pages><issn>0081-5438</issn><eissn>1531-8605</eissn><abstract>The paper deals with nearly integrable multidimensional a priori unstable Hamiltonian systems. Assuming the Hamilton function is smooth and time-periodic, we study perturbations that are trigonometric polynomials in the “angle” variables in the first approximation. For a generic system in this class, we construct a trajectory whose projection on the space of slow variables crosses a small neighborhood of a strong resonance. We also estimate the speed of this crossing.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0081543816080058</doi><tpages>32</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0081-5438 |
ispartof | Proceedings of the Steklov Institute of Mathematics, 2016-11, Vol.295 (1), p.63-94 |
issn | 0081-5438 1531-8605 |
language | eng |
recordid | cdi_proquest_journals_1880792191 |
source | Springer Online Journals Complete |
subjects | Arnold diffusion Hamiltonian functions Mathematics Mathematics and Statistics |
title | Arnold diffusion in a neighborhood of strong resonances |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T01%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arnold%20diffusion%20in%20a%20neighborhood%20of%20strong%20resonances&rft.jtitle=Proceedings%20of%20the%20Steklov%20Institute%20of%20Mathematics&rft.au=Davletshin,%20M.%20N.&rft.date=2016-11-01&rft.volume=295&rft.issue=1&rft.spage=63&rft.epage=94&rft.pages=63-94&rft.issn=0081-5438&rft.eissn=1531-8605&rft_id=info:doi/10.1134/S0081543816080058&rft_dat=%3Cproquest_cross%3E1880792191%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880792191&rft_id=info:pmid/&rfr_iscdi=true |