Scanning probe-based high-accuracy overlay alignment concept for lithography applications
Overlay alignment is a concern for nanolithography applications, in particular, for those using step and repeat techniques targeting next-generation lithographic applications. In this context, a new method and a proof of concept (POC) setup for accurately aligning a mask with a semiconductor wafer i...
Gespeichert in:
Veröffentlicht in: | Applied physics. A, Materials science & processing Materials science & processing, 2017, Vol.123 (1), p.1-12, Article 89 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12 |
---|---|
container_issue | 1 |
container_start_page | 1 |
container_title | Applied physics. A, Materials science & processing |
container_volume | 123 |
creator | Ishchuk, Valentyn Guliyev, Elshad Aydogan, Cemal Buliev, Ivan Kaestner, Marcus Ivanov, Tzvetan Ahmad, Ahmad Reum, Alexander Lenk, Steve Lenk, Claudia Nikolov, Nikolay Glinsner, Thomas Rangelow, Ivo W. |
description | Overlay alignment is a concern for nanolithography applications, in particular, for those using step and repeat techniques targeting next-generation lithographic applications. In this context, a new method and a proof of concept (POC) setup for accurately aligning a mask with a semiconductor wafer is presented. Utilizing active scanning probe technology, the method is employable for various lithographic techniques such as photolithography, electron- and ion-beam lithography, nanoimprint lithography (NIL). The developed method is demonstrated in the example of NIL. It employs compact highly integrated atomic force microscopes (mini-AFM), which are fixed on the lithographic template. The mini-AFM systems are applied for imaging of the surface relief marks on the semiconductor wafer to carry out the alignment process. In a next step, the obtained AFM section images are used to calculate the deviations and steer the bottom stage carrying the processed wafer in order to achieve the desired positioning accuracy. A POC test setup was built for emulation of the alignment procedure. Several measurement studies are addressed to evaluate the applicability of the overlay alignment method. As a result, it is shown that the implemented test setup is able to determine the positioning error of the bottom stage carrying the wafer with an accuracy of around 10 nm (without temperature compensation). |
doi_str_mv | 10.1007/s00339-016-0681-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880791042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880791042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4504eb47b4eda61e6b9e632ee5e62d6ef8ce006b4a6c6f1774fb91443c3d88c3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMRvOses4I6r4kiox0IXJcpzLR5XawU6R-u9xFQYWbjmd9Lzv3b2E3DK4ZwDFQwTgvKTAJAWpGFVnZMEEz9PE4ZwsoBQFVbyUl-Qqxh2kEnm-IJ8f1jjXuzYbg6-QViZinXV921Fj7SEYe8z8N4bBHDMz9K3bo5sy653FccoaH7KhnzrfBjN2iRjHobdm6r2L1-SiMUPEm9--JNvnp-36lW7eX97WjxtqOZMTFSsQWImiElgbyVBWJUqeI65Q5rXERlkEkJUw0sqGFYVoqpIJwS2vlbJ8Se5m23T_1wHjpHf-EFzaqJlSUJQsPZooNlM2-BgDNnoM_d6Eo2agTwHqOUCdAtSnALVKmnzWxMS6FsMf539FP3XAdMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880791042</pqid></control><display><type>article</type><title>Scanning probe-based high-accuracy overlay alignment concept for lithography applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ishchuk, Valentyn ; Guliyev, Elshad ; Aydogan, Cemal ; Buliev, Ivan ; Kaestner, Marcus ; Ivanov, Tzvetan ; Ahmad, Ahmad ; Reum, Alexander ; Lenk, Steve ; Lenk, Claudia ; Nikolov, Nikolay ; Glinsner, Thomas ; Rangelow, Ivo W.</creator><creatorcontrib>Ishchuk, Valentyn ; Guliyev, Elshad ; Aydogan, Cemal ; Buliev, Ivan ; Kaestner, Marcus ; Ivanov, Tzvetan ; Ahmad, Ahmad ; Reum, Alexander ; Lenk, Steve ; Lenk, Claudia ; Nikolov, Nikolay ; Glinsner, Thomas ; Rangelow, Ivo W.</creatorcontrib><description>Overlay alignment is a concern for nanolithography applications, in particular, for those using step and repeat techniques targeting next-generation lithographic applications. In this context, a new method and a proof of concept (POC) setup for accurately aligning a mask with a semiconductor wafer is presented. Utilizing active scanning probe technology, the method is employable for various lithographic techniques such as photolithography, electron- and ion-beam lithography, nanoimprint lithography (NIL). The developed method is demonstrated in the example of NIL. It employs compact highly integrated atomic force microscopes (mini-AFM), which are fixed on the lithographic template. The mini-AFM systems are applied for imaging of the surface relief marks on the semiconductor wafer to carry out the alignment process. In a next step, the obtained AFM section images are used to calculate the deviations and steer the bottom stage carrying the processed wafer in order to achieve the desired positioning accuracy. A POC test setup was built for emulation of the alignment procedure. Several measurement studies are addressed to evaluate the applicability of the overlay alignment method. As a result, it is shown that the implemented test setup is able to determine the positioning error of the bottom stage carrying the wafer with an accuracy of around 10 nm (without temperature compensation).</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-0681-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Alignment ; Applied physics ; Atomic force microscopes ; Atomic force microscopy ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Ion beams ; Lithography ; Machines ; Manufacturing ; Materials science ; Microscopes ; Nanotechnology ; Optical and Electronic Materials ; Photolithography ; Physics ; Physics and Astronomy ; Processes ; Scanning ; Surfaces and Interfaces ; Temperature compensation ; Thin Films</subject><ispartof>Applied physics. A, Materials science & processing, 2017, Vol.123 (1), p.1-12, Article 89</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4504eb47b4eda61e6b9e632ee5e62d6ef8ce006b4a6c6f1774fb91443c3d88c3</citedby><cites>FETCH-LOGICAL-c316t-4504eb47b4eda61e6b9e632ee5e62d6ef8ce006b4a6c6f1774fb91443c3d88c3</cites><orcidid>0000-0002-8834-7089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-016-0681-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-016-0681-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ishchuk, Valentyn</creatorcontrib><creatorcontrib>Guliyev, Elshad</creatorcontrib><creatorcontrib>Aydogan, Cemal</creatorcontrib><creatorcontrib>Buliev, Ivan</creatorcontrib><creatorcontrib>Kaestner, Marcus</creatorcontrib><creatorcontrib>Ivanov, Tzvetan</creatorcontrib><creatorcontrib>Ahmad, Ahmad</creatorcontrib><creatorcontrib>Reum, Alexander</creatorcontrib><creatorcontrib>Lenk, Steve</creatorcontrib><creatorcontrib>Lenk, Claudia</creatorcontrib><creatorcontrib>Nikolov, Nikolay</creatorcontrib><creatorcontrib>Glinsner, Thomas</creatorcontrib><creatorcontrib>Rangelow, Ivo W.</creatorcontrib><title>Scanning probe-based high-accuracy overlay alignment concept for lithography applications</title><title>Applied physics. A, Materials science & processing</title><addtitle>Appl. Phys. A</addtitle><description>Overlay alignment is a concern for nanolithography applications, in particular, for those using step and repeat techniques targeting next-generation lithographic applications. In this context, a new method and a proof of concept (POC) setup for accurately aligning a mask with a semiconductor wafer is presented. Utilizing active scanning probe technology, the method is employable for various lithographic techniques such as photolithography, electron- and ion-beam lithography, nanoimprint lithography (NIL). The developed method is demonstrated in the example of NIL. It employs compact highly integrated atomic force microscopes (mini-AFM), which are fixed on the lithographic template. The mini-AFM systems are applied for imaging of the surface relief marks on the semiconductor wafer to carry out the alignment process. In a next step, the obtained AFM section images are used to calculate the deviations and steer the bottom stage carrying the processed wafer in order to achieve the desired positioning accuracy. A POC test setup was built for emulation of the alignment procedure. Several measurement studies are addressed to evaluate the applicability of the overlay alignment method. As a result, it is shown that the implemented test setup is able to determine the positioning error of the bottom stage carrying the wafer with an accuracy of around 10 nm (without temperature compensation).</description><subject>Accuracy</subject><subject>Alignment</subject><subject>Applied physics</subject><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Ion beams</subject><subject>Lithography</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Microscopes</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Photolithography</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Scanning</subject><subject>Surfaces and Interfaces</subject><subject>Temperature compensation</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9giMRvOses4I6r4kiox0IXJcpzLR5XawU6R-u9xFQYWbjmd9Lzv3b2E3DK4ZwDFQwTgvKTAJAWpGFVnZMEEz9PE4ZwsoBQFVbyUl-Qqxh2kEnm-IJ8f1jjXuzYbg6-QViZinXV921Fj7SEYe8z8N4bBHDMz9K3bo5sy653FccoaH7KhnzrfBjN2iRjHobdm6r2L1-SiMUPEm9--JNvnp-36lW7eX97WjxtqOZMTFSsQWImiElgbyVBWJUqeI65Q5rXERlkEkJUw0sqGFYVoqpIJwS2vlbJ8Se5m23T_1wHjpHf-EFzaqJlSUJQsPZooNlM2-BgDNnoM_d6Eo2agTwHqOUCdAtSnALVKmnzWxMS6FsMf539FP3XAdMA</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Ishchuk, Valentyn</creator><creator>Guliyev, Elshad</creator><creator>Aydogan, Cemal</creator><creator>Buliev, Ivan</creator><creator>Kaestner, Marcus</creator><creator>Ivanov, Tzvetan</creator><creator>Ahmad, Ahmad</creator><creator>Reum, Alexander</creator><creator>Lenk, Steve</creator><creator>Lenk, Claudia</creator><creator>Nikolov, Nikolay</creator><creator>Glinsner, Thomas</creator><creator>Rangelow, Ivo W.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8834-7089</orcidid></search><sort><creationdate>2017</creationdate><title>Scanning probe-based high-accuracy overlay alignment concept for lithography applications</title><author>Ishchuk, Valentyn ; Guliyev, Elshad ; Aydogan, Cemal ; Buliev, Ivan ; Kaestner, Marcus ; Ivanov, Tzvetan ; Ahmad, Ahmad ; Reum, Alexander ; Lenk, Steve ; Lenk, Claudia ; Nikolov, Nikolay ; Glinsner, Thomas ; Rangelow, Ivo W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4504eb47b4eda61e6b9e632ee5e62d6ef8ce006b4a6c6f1774fb91443c3d88c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Alignment</topic><topic>Applied physics</topic><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Ion beams</topic><topic>Lithography</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Microscopes</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Photolithography</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Scanning</topic><topic>Surfaces and Interfaces</topic><topic>Temperature compensation</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishchuk, Valentyn</creatorcontrib><creatorcontrib>Guliyev, Elshad</creatorcontrib><creatorcontrib>Aydogan, Cemal</creatorcontrib><creatorcontrib>Buliev, Ivan</creatorcontrib><creatorcontrib>Kaestner, Marcus</creatorcontrib><creatorcontrib>Ivanov, Tzvetan</creatorcontrib><creatorcontrib>Ahmad, Ahmad</creatorcontrib><creatorcontrib>Reum, Alexander</creatorcontrib><creatorcontrib>Lenk, Steve</creatorcontrib><creatorcontrib>Lenk, Claudia</creatorcontrib><creatorcontrib>Nikolov, Nikolay</creatorcontrib><creatorcontrib>Glinsner, Thomas</creatorcontrib><creatorcontrib>Rangelow, Ivo W.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science & processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishchuk, Valentyn</au><au>Guliyev, Elshad</au><au>Aydogan, Cemal</au><au>Buliev, Ivan</au><au>Kaestner, Marcus</au><au>Ivanov, Tzvetan</au><au>Ahmad, Ahmad</au><au>Reum, Alexander</au><au>Lenk, Steve</au><au>Lenk, Claudia</au><au>Nikolov, Nikolay</au><au>Glinsner, Thomas</au><au>Rangelow, Ivo W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scanning probe-based high-accuracy overlay alignment concept for lithography applications</atitle><jtitle>Applied physics. A, Materials science & processing</jtitle><stitle>Appl. Phys. A</stitle><date>2017</date><risdate>2017</risdate><volume>123</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>89</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Overlay alignment is a concern for nanolithography applications, in particular, for those using step and repeat techniques targeting next-generation lithographic applications. In this context, a new method and a proof of concept (POC) setup for accurately aligning a mask with a semiconductor wafer is presented. Utilizing active scanning probe technology, the method is employable for various lithographic techniques such as photolithography, electron- and ion-beam lithography, nanoimprint lithography (NIL). The developed method is demonstrated in the example of NIL. It employs compact highly integrated atomic force microscopes (mini-AFM), which are fixed on the lithographic template. The mini-AFM systems are applied for imaging of the surface relief marks on the semiconductor wafer to carry out the alignment process. In a next step, the obtained AFM section images are used to calculate the deviations and steer the bottom stage carrying the processed wafer in order to achieve the desired positioning accuracy. A POC test setup was built for emulation of the alignment procedure. Several measurement studies are addressed to evaluate the applicability of the overlay alignment method. As a result, it is shown that the implemented test setup is able to determine the positioning error of the bottom stage carrying the wafer with an accuracy of around 10 nm (without temperature compensation).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-0681-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8834-7089</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-8396 |
ispartof | Applied physics. A, Materials science & processing, 2017, Vol.123 (1), p.1-12, Article 89 |
issn | 0947-8396 1432-0630 |
language | eng |
recordid | cdi_proquest_journals_1880791042 |
source | SpringerLink Journals - AutoHoldings |
subjects | Accuracy Alignment Applied physics Atomic force microscopes Atomic force microscopy Characterization and Evaluation of Materials Condensed Matter Physics Ion beams Lithography Machines Manufacturing Materials science Microscopes Nanotechnology Optical and Electronic Materials Photolithography Physics Physics and Astronomy Processes Scanning Surfaces and Interfaces Temperature compensation Thin Films |
title | Scanning probe-based high-accuracy overlay alignment concept for lithography applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scanning%20probe-based%20high-accuracy%20overlay%20alignment%20concept%20for%20lithography%20applications&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Ishchuk,%20Valentyn&rft.date=2017&rft.volume=123&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=89&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-0681-8&rft_dat=%3Cproquest_cross%3E1880791042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880791042&rft_id=info:pmid/&rfr_iscdi=true |