Scanning probe-based high-accuracy overlay alignment concept for lithography applications

Overlay alignment is a concern for nanolithography applications, in particular, for those using step and repeat techniques targeting next-generation lithographic applications. In this context, a new method and a proof of concept (POC) setup for accurately aligning a mask with a semiconductor wafer i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics. A, Materials science & processing Materials science & processing, 2017, Vol.123 (1), p.1-12, Article 89
Hauptverfasser: Ishchuk, Valentyn, Guliyev, Elshad, Aydogan, Cemal, Buliev, Ivan, Kaestner, Marcus, Ivanov, Tzvetan, Ahmad, Ahmad, Reum, Alexander, Lenk, Steve, Lenk, Claudia, Nikolov, Nikolay, Glinsner, Thomas, Rangelow, Ivo W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 1
container_start_page 1
container_title Applied physics. A, Materials science & processing
container_volume 123
creator Ishchuk, Valentyn
Guliyev, Elshad
Aydogan, Cemal
Buliev, Ivan
Kaestner, Marcus
Ivanov, Tzvetan
Ahmad, Ahmad
Reum, Alexander
Lenk, Steve
Lenk, Claudia
Nikolov, Nikolay
Glinsner, Thomas
Rangelow, Ivo W.
description Overlay alignment is a concern for nanolithography applications, in particular, for those using step and repeat techniques targeting next-generation lithographic applications. In this context, a new method and a proof of concept (POC) setup for accurately aligning a mask with a semiconductor wafer is presented. Utilizing active scanning probe technology, the method is employable for various lithographic techniques such as photolithography, electron- and ion-beam lithography, nanoimprint lithography (NIL). The developed method is demonstrated in the example of NIL. It employs compact highly integrated atomic force microscopes (mini-AFM), which are fixed on the lithographic template. The mini-AFM systems are applied for imaging of the surface relief marks on the semiconductor wafer to carry out the alignment process. In a next step, the obtained AFM section images are used to calculate the deviations and steer the bottom stage carrying the processed wafer in order to achieve the desired positioning accuracy. A POC test setup was built for emulation of the alignment procedure. Several measurement studies are addressed to evaluate the applicability of the overlay alignment method. As a result, it is shown that the implemented test setup is able to determine the positioning error of the bottom stage carrying the wafer with an accuracy of around 10 nm (without temperature compensation).
doi_str_mv 10.1007/s00339-016-0681-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880791042</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880791042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-4504eb47b4eda61e6b9e632ee5e62d6ef8ce006b4a6c6f1774fb91443c3d88c3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9giMRvOses4I6r4kiox0IXJcpzLR5XawU6R-u9xFQYWbjmd9Lzv3b2E3DK4ZwDFQwTgvKTAJAWpGFVnZMEEz9PE4ZwsoBQFVbyUl-Qqxh2kEnm-IJ8f1jjXuzYbg6-QViZinXV921Fj7SEYe8z8N4bBHDMz9K3bo5sy653FccoaH7KhnzrfBjN2iRjHobdm6r2L1-SiMUPEm9--JNvnp-36lW7eX97WjxtqOZMTFSsQWImiElgbyVBWJUqeI65Q5rXERlkEkJUw0sqGFYVoqpIJwS2vlbJ8Se5m23T_1wHjpHf-EFzaqJlSUJQsPZooNlM2-BgDNnoM_d6Eo2agTwHqOUCdAtSnALVKmnzWxMS6FsMf539FP3XAdMA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880791042</pqid></control><display><type>article</type><title>Scanning probe-based high-accuracy overlay alignment concept for lithography applications</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ishchuk, Valentyn ; Guliyev, Elshad ; Aydogan, Cemal ; Buliev, Ivan ; Kaestner, Marcus ; Ivanov, Tzvetan ; Ahmad, Ahmad ; Reum, Alexander ; Lenk, Steve ; Lenk, Claudia ; Nikolov, Nikolay ; Glinsner, Thomas ; Rangelow, Ivo W.</creator><creatorcontrib>Ishchuk, Valentyn ; Guliyev, Elshad ; Aydogan, Cemal ; Buliev, Ivan ; Kaestner, Marcus ; Ivanov, Tzvetan ; Ahmad, Ahmad ; Reum, Alexander ; Lenk, Steve ; Lenk, Claudia ; Nikolov, Nikolay ; Glinsner, Thomas ; Rangelow, Ivo W.</creatorcontrib><description>Overlay alignment is a concern for nanolithography applications, in particular, for those using step and repeat techniques targeting next-generation lithographic applications. In this context, a new method and a proof of concept (POC) setup for accurately aligning a mask with a semiconductor wafer is presented. Utilizing active scanning probe technology, the method is employable for various lithographic techniques such as photolithography, electron- and ion-beam lithography, nanoimprint lithography (NIL). The developed method is demonstrated in the example of NIL. It employs compact highly integrated atomic force microscopes (mini-AFM), which are fixed on the lithographic template. The mini-AFM systems are applied for imaging of the surface relief marks on the semiconductor wafer to carry out the alignment process. In a next step, the obtained AFM section images are used to calculate the deviations and steer the bottom stage carrying the processed wafer in order to achieve the desired positioning accuracy. A POC test setup was built for emulation of the alignment procedure. Several measurement studies are addressed to evaluate the applicability of the overlay alignment method. As a result, it is shown that the implemented test setup is able to determine the positioning error of the bottom stage carrying the wafer with an accuracy of around 10 nm (without temperature compensation).</description><identifier>ISSN: 0947-8396</identifier><identifier>EISSN: 1432-0630</identifier><identifier>DOI: 10.1007/s00339-016-0681-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Accuracy ; Alignment ; Applied physics ; Atomic force microscopes ; Atomic force microscopy ; Characterization and Evaluation of Materials ; Condensed Matter Physics ; Ion beams ; Lithography ; Machines ; Manufacturing ; Materials science ; Microscopes ; Nanotechnology ; Optical and Electronic Materials ; Photolithography ; Physics ; Physics and Astronomy ; Processes ; Scanning ; Surfaces and Interfaces ; Temperature compensation ; Thin Films</subject><ispartof>Applied physics. A, Materials science &amp; processing, 2017, Vol.123 (1), p.1-12, Article 89</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-4504eb47b4eda61e6b9e632ee5e62d6ef8ce006b4a6c6f1774fb91443c3d88c3</citedby><cites>FETCH-LOGICAL-c316t-4504eb47b4eda61e6b9e632ee5e62d6ef8ce006b4a6c6f1774fb91443c3d88c3</cites><orcidid>0000-0002-8834-7089</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00339-016-0681-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00339-016-0681-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Ishchuk, Valentyn</creatorcontrib><creatorcontrib>Guliyev, Elshad</creatorcontrib><creatorcontrib>Aydogan, Cemal</creatorcontrib><creatorcontrib>Buliev, Ivan</creatorcontrib><creatorcontrib>Kaestner, Marcus</creatorcontrib><creatorcontrib>Ivanov, Tzvetan</creatorcontrib><creatorcontrib>Ahmad, Ahmad</creatorcontrib><creatorcontrib>Reum, Alexander</creatorcontrib><creatorcontrib>Lenk, Steve</creatorcontrib><creatorcontrib>Lenk, Claudia</creatorcontrib><creatorcontrib>Nikolov, Nikolay</creatorcontrib><creatorcontrib>Glinsner, Thomas</creatorcontrib><creatorcontrib>Rangelow, Ivo W.</creatorcontrib><title>Scanning probe-based high-accuracy overlay alignment concept for lithography applications</title><title>Applied physics. A, Materials science &amp; processing</title><addtitle>Appl. Phys. A</addtitle><description>Overlay alignment is a concern for nanolithography applications, in particular, for those using step and repeat techniques targeting next-generation lithographic applications. In this context, a new method and a proof of concept (POC) setup for accurately aligning a mask with a semiconductor wafer is presented. Utilizing active scanning probe technology, the method is employable for various lithographic techniques such as photolithography, electron- and ion-beam lithography, nanoimprint lithography (NIL). The developed method is demonstrated in the example of NIL. It employs compact highly integrated atomic force microscopes (mini-AFM), which are fixed on the lithographic template. The mini-AFM systems are applied for imaging of the surface relief marks on the semiconductor wafer to carry out the alignment process. In a next step, the obtained AFM section images are used to calculate the deviations and steer the bottom stage carrying the processed wafer in order to achieve the desired positioning accuracy. A POC test setup was built for emulation of the alignment procedure. Several measurement studies are addressed to evaluate the applicability of the overlay alignment method. As a result, it is shown that the implemented test setup is able to determine the positioning error of the bottom stage carrying the wafer with an accuracy of around 10 nm (without temperature compensation).</description><subject>Accuracy</subject><subject>Alignment</subject><subject>Applied physics</subject><subject>Atomic force microscopes</subject><subject>Atomic force microscopy</subject><subject>Characterization and Evaluation of Materials</subject><subject>Condensed Matter Physics</subject><subject>Ion beams</subject><subject>Lithography</subject><subject>Machines</subject><subject>Manufacturing</subject><subject>Materials science</subject><subject>Microscopes</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><subject>Photolithography</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Processes</subject><subject>Scanning</subject><subject>Surfaces and Interfaces</subject><subject>Temperature compensation</subject><subject>Thin Films</subject><issn>0947-8396</issn><issn>1432-0630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9giMRvOses4I6r4kiox0IXJcpzLR5XawU6R-u9xFQYWbjmd9Lzv3b2E3DK4ZwDFQwTgvKTAJAWpGFVnZMEEz9PE4ZwsoBQFVbyUl-Qqxh2kEnm-IJ8f1jjXuzYbg6-QViZinXV921Fj7SEYe8z8N4bBHDMz9K3bo5sy653FccoaH7KhnzrfBjN2iRjHobdm6r2L1-SiMUPEm9--JNvnp-36lW7eX97WjxtqOZMTFSsQWImiElgbyVBWJUqeI65Q5rXERlkEkJUw0sqGFYVoqpIJwS2vlbJ8Se5m23T_1wHjpHf-EFzaqJlSUJQsPZooNlM2-BgDNnoM_d6Eo2agTwHqOUCdAtSnALVKmnzWxMS6FsMf539FP3XAdMA</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Ishchuk, Valentyn</creator><creator>Guliyev, Elshad</creator><creator>Aydogan, Cemal</creator><creator>Buliev, Ivan</creator><creator>Kaestner, Marcus</creator><creator>Ivanov, Tzvetan</creator><creator>Ahmad, Ahmad</creator><creator>Reum, Alexander</creator><creator>Lenk, Steve</creator><creator>Lenk, Claudia</creator><creator>Nikolov, Nikolay</creator><creator>Glinsner, Thomas</creator><creator>Rangelow, Ivo W.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8834-7089</orcidid></search><sort><creationdate>2017</creationdate><title>Scanning probe-based high-accuracy overlay alignment concept for lithography applications</title><author>Ishchuk, Valentyn ; Guliyev, Elshad ; Aydogan, Cemal ; Buliev, Ivan ; Kaestner, Marcus ; Ivanov, Tzvetan ; Ahmad, Ahmad ; Reum, Alexander ; Lenk, Steve ; Lenk, Claudia ; Nikolov, Nikolay ; Glinsner, Thomas ; Rangelow, Ivo W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-4504eb47b4eda61e6b9e632ee5e62d6ef8ce006b4a6c6f1774fb91443c3d88c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Alignment</topic><topic>Applied physics</topic><topic>Atomic force microscopes</topic><topic>Atomic force microscopy</topic><topic>Characterization and Evaluation of Materials</topic><topic>Condensed Matter Physics</topic><topic>Ion beams</topic><topic>Lithography</topic><topic>Machines</topic><topic>Manufacturing</topic><topic>Materials science</topic><topic>Microscopes</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><topic>Photolithography</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Processes</topic><topic>Scanning</topic><topic>Surfaces and Interfaces</topic><topic>Temperature compensation</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ishchuk, Valentyn</creatorcontrib><creatorcontrib>Guliyev, Elshad</creatorcontrib><creatorcontrib>Aydogan, Cemal</creatorcontrib><creatorcontrib>Buliev, Ivan</creatorcontrib><creatorcontrib>Kaestner, Marcus</creatorcontrib><creatorcontrib>Ivanov, Tzvetan</creatorcontrib><creatorcontrib>Ahmad, Ahmad</creatorcontrib><creatorcontrib>Reum, Alexander</creatorcontrib><creatorcontrib>Lenk, Steve</creatorcontrib><creatorcontrib>Lenk, Claudia</creatorcontrib><creatorcontrib>Nikolov, Nikolay</creatorcontrib><creatorcontrib>Glinsner, Thomas</creatorcontrib><creatorcontrib>Rangelow, Ivo W.</creatorcontrib><collection>CrossRef</collection><jtitle>Applied physics. A, Materials science &amp; processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ishchuk, Valentyn</au><au>Guliyev, Elshad</au><au>Aydogan, Cemal</au><au>Buliev, Ivan</au><au>Kaestner, Marcus</au><au>Ivanov, Tzvetan</au><au>Ahmad, Ahmad</au><au>Reum, Alexander</au><au>Lenk, Steve</au><au>Lenk, Claudia</au><au>Nikolov, Nikolay</au><au>Glinsner, Thomas</au><au>Rangelow, Ivo W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scanning probe-based high-accuracy overlay alignment concept for lithography applications</atitle><jtitle>Applied physics. A, Materials science &amp; processing</jtitle><stitle>Appl. Phys. A</stitle><date>2017</date><risdate>2017</risdate><volume>123</volume><issue>1</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>89</artnum><issn>0947-8396</issn><eissn>1432-0630</eissn><abstract>Overlay alignment is a concern for nanolithography applications, in particular, for those using step and repeat techniques targeting next-generation lithographic applications. In this context, a new method and a proof of concept (POC) setup for accurately aligning a mask with a semiconductor wafer is presented. Utilizing active scanning probe technology, the method is employable for various lithographic techniques such as photolithography, electron- and ion-beam lithography, nanoimprint lithography (NIL). The developed method is demonstrated in the example of NIL. It employs compact highly integrated atomic force microscopes (mini-AFM), which are fixed on the lithographic template. The mini-AFM systems are applied for imaging of the surface relief marks on the semiconductor wafer to carry out the alignment process. In a next step, the obtained AFM section images are used to calculate the deviations and steer the bottom stage carrying the processed wafer in order to achieve the desired positioning accuracy. A POC test setup was built for emulation of the alignment procedure. Several measurement studies are addressed to evaluate the applicability of the overlay alignment method. As a result, it is shown that the implemented test setup is able to determine the positioning error of the bottom stage carrying the wafer with an accuracy of around 10 nm (without temperature compensation).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00339-016-0681-8</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-8834-7089</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-8396
ispartof Applied physics. A, Materials science & processing, 2017, Vol.123 (1), p.1-12, Article 89
issn 0947-8396
1432-0630
language eng
recordid cdi_proquest_journals_1880791042
source SpringerLink Journals - AutoHoldings
subjects Accuracy
Alignment
Applied physics
Atomic force microscopes
Atomic force microscopy
Characterization and Evaluation of Materials
Condensed Matter Physics
Ion beams
Lithography
Machines
Manufacturing
Materials science
Microscopes
Nanotechnology
Optical and Electronic Materials
Photolithography
Physics
Physics and Astronomy
Processes
Scanning
Surfaces and Interfaces
Temperature compensation
Thin Films
title Scanning probe-based high-accuracy overlay alignment concept for lithography applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A05%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scanning%20probe-based%20high-accuracy%20overlay%20alignment%20concept%20for%20lithography%20applications&rft.jtitle=Applied%20physics.%20A,%20Materials%20science%20&%20processing&rft.au=Ishchuk,%20Valentyn&rft.date=2017&rft.volume=123&rft.issue=1&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=89&rft.issn=0947-8396&rft.eissn=1432-0630&rft_id=info:doi/10.1007/s00339-016-0681-8&rft_dat=%3Cproquest_cross%3E1880791042%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880791042&rft_id=info:pmid/&rfr_iscdi=true