Numerical and experimental investigations of a rotating nonlinear energy sink

In this work, passive nonlinear targeted energy transfer (TET) is addressed by numerically and experimentally investigating a lightweight rotating nonlinear energy sink (NES) which is coupled to a primary two-degree-of-freedom linear oscillator through an essentially nonlinear (i.e., non-linearizabl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Meccanica (Milan) 2017-03, Vol.52 (4-5), p.763-779
Hauptverfasser: AL-Shudeifat, Mohammad A., Wierschem, Nicholas E., Bergman, Lawrence A., Vakakis, Alexander F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 779
container_issue 4-5
container_start_page 763
container_title Meccanica (Milan)
container_volume 52
creator AL-Shudeifat, Mohammad A.
Wierschem, Nicholas E.
Bergman, Lawrence A.
Vakakis, Alexander F.
description In this work, passive nonlinear targeted energy transfer (TET) is addressed by numerically and experimentally investigating a lightweight rotating nonlinear energy sink (NES) which is coupled to a primary two-degree-of-freedom linear oscillator through an essentially nonlinear (i.e., non-linearizable) inertial nonlinearity. It is found that the rotating NES passively absorbs and rapidly dissipates a considerable portion of impulse energy initially induced in the primary oscillator. The parameters of the rotating NES are optimized numerically for optimal performance under intermediate and strong loads. The fundamental mechanism for effective TET to the NES is the excitation of its rotational nonlinear mode, since its oscillatory mode dissipates far less energy. This involves a highly energetic and intense resonance capture of the transient nonlinear dynamics at the lowest modal frequency of the primary system; this is studied in detail by constructing an appropriate frequency–energy plot. A series of experimental tests is then performed to validate the theoretical predictions. Based on the obtained numerical and experimental results, the performance of the rotating NES is found to be comparable to other current translational NES designs; however, the proposed rotating device is less complicated and more compact than current types of NESs.
doi_str_mv 10.1007/s11012-016-0422-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880788210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880788210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d79fb7649173b48c7abced09c1d62a7a7fc48e8894cb4a2cc982e3fbe92dd58e3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTaMHSd2lqjiJRXYwNpynEmU0trFThH9e1yFBRtWozu6Zx6XkEsO1xxA3STOgQsGvGIghWDiiMx4qQSrK6mPyQxAlKySZXlKzlJaAWQKyhl5ftltMA7Orqn1LcXvbVYb9GNuDP4L0zj0dhyCTzR01NIYxix9T33w68GjjRQ9xn5P0-A_zslJZ9cJL37rnLzf370tHtny9eFpcbtkruDVyFpVd42qZM1V0UjtlG0ctlA73lbCKqs6JzVqXUvXSCucq7XAomuwFm1baizm5Gqau43hc5ePNKuwiz6vNFxrUFoLDtnFJ5eLIaWIndnm32zcGw7mkJqZUjM5NXNIzYjMiIlJ2et7jH8m_wv9AKllcLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880788210</pqid></control><display><type>article</type><title>Numerical and experimental investigations of a rotating nonlinear energy sink</title><source>SpringerLink_现刊</source><creator>AL-Shudeifat, Mohammad A. ; Wierschem, Nicholas E. ; Bergman, Lawrence A. ; Vakakis, Alexander F.</creator><creatorcontrib>AL-Shudeifat, Mohammad A. ; Wierschem, Nicholas E. ; Bergman, Lawrence A. ; Vakakis, Alexander F.</creatorcontrib><description>In this work, passive nonlinear targeted energy transfer (TET) is addressed by numerically and experimentally investigating a lightweight rotating nonlinear energy sink (NES) which is coupled to a primary two-degree-of-freedom linear oscillator through an essentially nonlinear (i.e., non-linearizable) inertial nonlinearity. It is found that the rotating NES passively absorbs and rapidly dissipates a considerable portion of impulse energy initially induced in the primary oscillator. The parameters of the rotating NES are optimized numerically for optimal performance under intermediate and strong loads. The fundamental mechanism for effective TET to the NES is the excitation of its rotational nonlinear mode, since its oscillatory mode dissipates far less energy. This involves a highly energetic and intense resonance capture of the transient nonlinear dynamics at the lowest modal frequency of the primary system; this is studied in detail by constructing an appropriate frequency–energy plot. A series of experimental tests is then performed to validate the theoretical predictions. Based on the obtained numerical and experimental results, the performance of the rotating NES is found to be comparable to other current translational NES designs; however, the proposed rotating device is less complicated and more compact than current types of NESs.</description><identifier>ISSN: 0025-6455</identifier><identifier>EISSN: 1572-9648</identifier><identifier>DOI: 10.1007/s11012-016-0422-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Civil Engineering ; Classical Mechanics ; Mechanical Engineering ; Nonlinear dynamics ; Physics ; Physics and Astronomy</subject><ispartof>Meccanica (Milan), 2017-03, Vol.52 (4-5), p.763-779</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d79fb7649173b48c7abced09c1d62a7a7fc48e8894cb4a2cc982e3fbe92dd58e3</citedby><cites>FETCH-LOGICAL-c316t-d79fb7649173b48c7abced09c1d62a7a7fc48e8894cb4a2cc982e3fbe92dd58e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11012-016-0422-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11012-016-0422-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>AL-Shudeifat, Mohammad A.</creatorcontrib><creatorcontrib>Wierschem, Nicholas E.</creatorcontrib><creatorcontrib>Bergman, Lawrence A.</creatorcontrib><creatorcontrib>Vakakis, Alexander F.</creatorcontrib><title>Numerical and experimental investigations of a rotating nonlinear energy sink</title><title>Meccanica (Milan)</title><addtitle>Meccanica</addtitle><description>In this work, passive nonlinear targeted energy transfer (TET) is addressed by numerically and experimentally investigating a lightweight rotating nonlinear energy sink (NES) which is coupled to a primary two-degree-of-freedom linear oscillator through an essentially nonlinear (i.e., non-linearizable) inertial nonlinearity. It is found that the rotating NES passively absorbs and rapidly dissipates a considerable portion of impulse energy initially induced in the primary oscillator. The parameters of the rotating NES are optimized numerically for optimal performance under intermediate and strong loads. The fundamental mechanism for effective TET to the NES is the excitation of its rotational nonlinear mode, since its oscillatory mode dissipates far less energy. This involves a highly energetic and intense resonance capture of the transient nonlinear dynamics at the lowest modal frequency of the primary system; this is studied in detail by constructing an appropriate frequency–energy plot. A series of experimental tests is then performed to validate the theoretical predictions. Based on the obtained numerical and experimental results, the performance of the rotating NES is found to be comparable to other current translational NES designs; however, the proposed rotating device is less complicated and more compact than current types of NESs.</description><subject>Automotive Engineering</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0025-6455</issn><issn>1572-9648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssTaMHSd2lqjiJRXYwNpynEmU0trFThH9e1yFBRtWozu6Zx6XkEsO1xxA3STOgQsGvGIghWDiiMx4qQSrK6mPyQxAlKySZXlKzlJaAWQKyhl5ftltMA7Orqn1LcXvbVYb9GNuDP4L0zj0dhyCTzR01NIYxix9T33w68GjjRQ9xn5P0-A_zslJZ9cJL37rnLzf370tHtny9eFpcbtkruDVyFpVd42qZM1V0UjtlG0ctlA73lbCKqs6JzVqXUvXSCucq7XAomuwFm1baizm5Gqau43hc5ePNKuwiz6vNFxrUFoLDtnFJ5eLIaWIndnm32zcGw7mkJqZUjM5NXNIzYjMiIlJ2et7jH8m_wv9AKllcLg</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>AL-Shudeifat, Mohammad A.</creator><creator>Wierschem, Nicholas E.</creator><creator>Bergman, Lawrence A.</creator><creator>Vakakis, Alexander F.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Numerical and experimental investigations of a rotating nonlinear energy sink</title><author>AL-Shudeifat, Mohammad A. ; Wierschem, Nicholas E. ; Bergman, Lawrence A. ; Vakakis, Alexander F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d79fb7649173b48c7abced09c1d62a7a7fc48e8894cb4a2cc982e3fbe92dd58e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive Engineering</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AL-Shudeifat, Mohammad A.</creatorcontrib><creatorcontrib>Wierschem, Nicholas E.</creatorcontrib><creatorcontrib>Bergman, Lawrence A.</creatorcontrib><creatorcontrib>Vakakis, Alexander F.</creatorcontrib><collection>CrossRef</collection><jtitle>Meccanica (Milan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AL-Shudeifat, Mohammad A.</au><au>Wierschem, Nicholas E.</au><au>Bergman, Lawrence A.</au><au>Vakakis, Alexander F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and experimental investigations of a rotating nonlinear energy sink</atitle><jtitle>Meccanica (Milan)</jtitle><stitle>Meccanica</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>52</volume><issue>4-5</issue><spage>763</spage><epage>779</epage><pages>763-779</pages><issn>0025-6455</issn><eissn>1572-9648</eissn><abstract>In this work, passive nonlinear targeted energy transfer (TET) is addressed by numerically and experimentally investigating a lightweight rotating nonlinear energy sink (NES) which is coupled to a primary two-degree-of-freedom linear oscillator through an essentially nonlinear (i.e., non-linearizable) inertial nonlinearity. It is found that the rotating NES passively absorbs and rapidly dissipates a considerable portion of impulse energy initially induced in the primary oscillator. The parameters of the rotating NES are optimized numerically for optimal performance under intermediate and strong loads. The fundamental mechanism for effective TET to the NES is the excitation of its rotational nonlinear mode, since its oscillatory mode dissipates far less energy. This involves a highly energetic and intense resonance capture of the transient nonlinear dynamics at the lowest modal frequency of the primary system; this is studied in detail by constructing an appropriate frequency–energy plot. A series of experimental tests is then performed to validate the theoretical predictions. Based on the obtained numerical and experimental results, the performance of the rotating NES is found to be comparable to other current translational NES designs; however, the proposed rotating device is less complicated and more compact than current types of NESs.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11012-016-0422-2</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-6455
ispartof Meccanica (Milan), 2017-03, Vol.52 (4-5), p.763-779
issn 0025-6455
1572-9648
language eng
recordid cdi_proquest_journals_1880788210
source SpringerLink_现刊
subjects Automotive Engineering
Civil Engineering
Classical Mechanics
Mechanical Engineering
Nonlinear dynamics
Physics
Physics and Astronomy
title Numerical and experimental investigations of a rotating nonlinear energy sink
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20experimental%20investigations%20of%20a%20rotating%20nonlinear%20energy%20sink&rft.jtitle=Meccanica%20(Milan)&rft.au=AL-Shudeifat,%20Mohammad%20A.&rft.date=2017-03-01&rft.volume=52&rft.issue=4-5&rft.spage=763&rft.epage=779&rft.pages=763-779&rft.issn=0025-6455&rft.eissn=1572-9648&rft_id=info:doi/10.1007/s11012-016-0422-2&rft_dat=%3Cproquest_cross%3E1880788210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880788210&rft_id=info:pmid/&rfr_iscdi=true