Numerical and experimental investigations of a rotating nonlinear energy sink
In this work, passive nonlinear targeted energy transfer (TET) is addressed by numerically and experimentally investigating a lightweight rotating nonlinear energy sink (NES) which is coupled to a primary two-degree-of-freedom linear oscillator through an essentially nonlinear (i.e., non-linearizabl...
Gespeichert in:
Veröffentlicht in: | Meccanica (Milan) 2017-03, Vol.52 (4-5), p.763-779 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 779 |
---|---|
container_issue | 4-5 |
container_start_page | 763 |
container_title | Meccanica (Milan) |
container_volume | 52 |
creator | AL-Shudeifat, Mohammad A. Wierschem, Nicholas E. Bergman, Lawrence A. Vakakis, Alexander F. |
description | In this work, passive nonlinear targeted energy transfer (TET) is addressed by numerically and experimentally investigating a lightweight rotating nonlinear energy sink (NES) which is coupled to a primary two-degree-of-freedom linear oscillator through an essentially nonlinear (i.e., non-linearizable) inertial nonlinearity. It is found that the rotating NES passively absorbs and rapidly dissipates a considerable portion of impulse energy initially induced in the primary oscillator. The parameters of the rotating NES are optimized numerically for optimal performance under intermediate and strong loads. The fundamental mechanism for effective TET to the NES is the excitation of its rotational nonlinear mode, since its oscillatory mode dissipates far less energy. This involves a highly energetic and intense resonance capture of the transient nonlinear dynamics at the lowest modal frequency of the primary system; this is studied in detail by constructing an appropriate frequency–energy plot. A series of experimental tests is then performed to validate the theoretical predictions. Based on the obtained numerical and experimental results, the performance of the rotating NES is found to be comparable to other current translational NES designs; however, the proposed rotating device is less complicated and more compact than current types of NESs. |
doi_str_mv | 10.1007/s11012-016-0422-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880788210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880788210</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-d79fb7649173b48c7abced09c1d62a7a7fc48e8894cb4a2cc982e3fbe92dd58e3</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0EEqXwAewssTaMHSd2lqjiJRXYwNpynEmU0trFThH9e1yFBRtWozu6Zx6XkEsO1xxA3STOgQsGvGIghWDiiMx4qQSrK6mPyQxAlKySZXlKzlJaAWQKyhl5ftltMA7Orqn1LcXvbVYb9GNuDP4L0zj0dhyCTzR01NIYxix9T33w68GjjRQ9xn5P0-A_zslJZ9cJL37rnLzf370tHtny9eFpcbtkruDVyFpVd42qZM1V0UjtlG0ctlA73lbCKqs6JzVqXUvXSCucq7XAomuwFm1baizm5Gqau43hc5ePNKuwiz6vNFxrUFoLDtnFJ5eLIaWIndnm32zcGw7mkJqZUjM5NXNIzYjMiIlJ2et7jH8m_wv9AKllcLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880788210</pqid></control><display><type>article</type><title>Numerical and experimental investigations of a rotating nonlinear energy sink</title><source>SpringerLink_现刊</source><creator>AL-Shudeifat, Mohammad A. ; Wierschem, Nicholas E. ; Bergman, Lawrence A. ; Vakakis, Alexander F.</creator><creatorcontrib>AL-Shudeifat, Mohammad A. ; Wierschem, Nicholas E. ; Bergman, Lawrence A. ; Vakakis, Alexander F.</creatorcontrib><description>In this work, passive nonlinear targeted energy transfer (TET) is addressed by numerically and experimentally investigating a lightweight rotating nonlinear energy sink (NES) which is coupled to a primary two-degree-of-freedom linear oscillator through an essentially nonlinear (i.e., non-linearizable) inertial nonlinearity. It is found that the rotating NES passively absorbs and rapidly dissipates a considerable portion of impulse energy initially induced in the primary oscillator. The parameters of the rotating NES are optimized numerically for optimal performance under intermediate and strong loads. The fundamental mechanism for effective TET to the NES is the excitation of its rotational nonlinear mode, since its oscillatory mode dissipates far less energy. This involves a highly energetic and intense resonance capture of the transient nonlinear dynamics at the lowest modal frequency of the primary system; this is studied in detail by constructing an appropriate frequency–energy plot. A series of experimental tests is then performed to validate the theoretical predictions. Based on the obtained numerical and experimental results, the performance of the rotating NES is found to be comparable to other current translational NES designs; however, the proposed rotating device is less complicated and more compact than current types of NESs.</description><identifier>ISSN: 0025-6455</identifier><identifier>EISSN: 1572-9648</identifier><identifier>DOI: 10.1007/s11012-016-0422-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Automotive Engineering ; Civil Engineering ; Classical Mechanics ; Mechanical Engineering ; Nonlinear dynamics ; Physics ; Physics and Astronomy</subject><ispartof>Meccanica (Milan), 2017-03, Vol.52 (4-5), p.763-779</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-d79fb7649173b48c7abced09c1d62a7a7fc48e8894cb4a2cc982e3fbe92dd58e3</citedby><cites>FETCH-LOGICAL-c316t-d79fb7649173b48c7abced09c1d62a7a7fc48e8894cb4a2cc982e3fbe92dd58e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11012-016-0422-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11012-016-0422-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>AL-Shudeifat, Mohammad A.</creatorcontrib><creatorcontrib>Wierschem, Nicholas E.</creatorcontrib><creatorcontrib>Bergman, Lawrence A.</creatorcontrib><creatorcontrib>Vakakis, Alexander F.</creatorcontrib><title>Numerical and experimental investigations of a rotating nonlinear energy sink</title><title>Meccanica (Milan)</title><addtitle>Meccanica</addtitle><description>In this work, passive nonlinear targeted energy transfer (TET) is addressed by numerically and experimentally investigating a lightweight rotating nonlinear energy sink (NES) which is coupled to a primary two-degree-of-freedom linear oscillator through an essentially nonlinear (i.e., non-linearizable) inertial nonlinearity. It is found that the rotating NES passively absorbs and rapidly dissipates a considerable portion of impulse energy initially induced in the primary oscillator. The parameters of the rotating NES are optimized numerically for optimal performance under intermediate and strong loads. The fundamental mechanism for effective TET to the NES is the excitation of its rotational nonlinear mode, since its oscillatory mode dissipates far less energy. This involves a highly energetic and intense resonance capture of the transient nonlinear dynamics at the lowest modal frequency of the primary system; this is studied in detail by constructing an appropriate frequency–energy plot. A series of experimental tests is then performed to validate the theoretical predictions. Based on the obtained numerical and experimental results, the performance of the rotating NES is found to be comparable to other current translational NES designs; however, the proposed rotating device is less complicated and more compact than current types of NESs.</description><subject>Automotive Engineering</subject><subject>Civil Engineering</subject><subject>Classical Mechanics</subject><subject>Mechanical Engineering</subject><subject>Nonlinear dynamics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><issn>0025-6455</issn><issn>1572-9648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0EEqXwAewssTaMHSd2lqjiJRXYwNpynEmU0trFThH9e1yFBRtWozu6Zx6XkEsO1xxA3STOgQsGvGIghWDiiMx4qQSrK6mPyQxAlKySZXlKzlJaAWQKyhl5ftltMA7Orqn1LcXvbVYb9GNuDP4L0zj0dhyCTzR01NIYxix9T33w68GjjRQ9xn5P0-A_zslJZ9cJL37rnLzf370tHtny9eFpcbtkruDVyFpVd42qZM1V0UjtlG0ctlA73lbCKqs6JzVqXUvXSCucq7XAomuwFm1baizm5Gqau43hc5ePNKuwiz6vNFxrUFoLDtnFJ5eLIaWIndnm32zcGw7mkJqZUjM5NXNIzYjMiIlJ2et7jH8m_wv9AKllcLg</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>AL-Shudeifat, Mohammad A.</creator><creator>Wierschem, Nicholas E.</creator><creator>Bergman, Lawrence A.</creator><creator>Vakakis, Alexander F.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Numerical and experimental investigations of a rotating nonlinear energy sink</title><author>AL-Shudeifat, Mohammad A. ; Wierschem, Nicholas E. ; Bergman, Lawrence A. ; Vakakis, Alexander F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-d79fb7649173b48c7abced09c1d62a7a7fc48e8894cb4a2cc982e3fbe92dd58e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Automotive Engineering</topic><topic>Civil Engineering</topic><topic>Classical Mechanics</topic><topic>Mechanical Engineering</topic><topic>Nonlinear dynamics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>AL-Shudeifat, Mohammad A.</creatorcontrib><creatorcontrib>Wierschem, Nicholas E.</creatorcontrib><creatorcontrib>Bergman, Lawrence A.</creatorcontrib><creatorcontrib>Vakakis, Alexander F.</creatorcontrib><collection>CrossRef</collection><jtitle>Meccanica (Milan)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>AL-Shudeifat, Mohammad A.</au><au>Wierschem, Nicholas E.</au><au>Bergman, Lawrence A.</au><au>Vakakis, Alexander F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical and experimental investigations of a rotating nonlinear energy sink</atitle><jtitle>Meccanica (Milan)</jtitle><stitle>Meccanica</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>52</volume><issue>4-5</issue><spage>763</spage><epage>779</epage><pages>763-779</pages><issn>0025-6455</issn><eissn>1572-9648</eissn><abstract>In this work, passive nonlinear targeted energy transfer (TET) is addressed by numerically and experimentally investigating a lightweight rotating nonlinear energy sink (NES) which is coupled to a primary two-degree-of-freedom linear oscillator through an essentially nonlinear (i.e., non-linearizable) inertial nonlinearity. It is found that the rotating NES passively absorbs and rapidly dissipates a considerable portion of impulse energy initially induced in the primary oscillator. The parameters of the rotating NES are optimized numerically for optimal performance under intermediate and strong loads. The fundamental mechanism for effective TET to the NES is the excitation of its rotational nonlinear mode, since its oscillatory mode dissipates far less energy. This involves a highly energetic and intense resonance capture of the transient nonlinear dynamics at the lowest modal frequency of the primary system; this is studied in detail by constructing an appropriate frequency–energy plot. A series of experimental tests is then performed to validate the theoretical predictions. Based on the obtained numerical and experimental results, the performance of the rotating NES is found to be comparable to other current translational NES designs; however, the proposed rotating device is less complicated and more compact than current types of NESs.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11012-016-0422-2</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0025-6455 |
ispartof | Meccanica (Milan), 2017-03, Vol.52 (4-5), p.763-779 |
issn | 0025-6455 1572-9648 |
language | eng |
recordid | cdi_proquest_journals_1880788210 |
source | SpringerLink_现刊 |
subjects | Automotive Engineering Civil Engineering Classical Mechanics Mechanical Engineering Nonlinear dynamics Physics Physics and Astronomy |
title | Numerical and experimental investigations of a rotating nonlinear energy sink |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A24%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20and%20experimental%20investigations%20of%20a%20rotating%20nonlinear%20energy%20sink&rft.jtitle=Meccanica%20(Milan)&rft.au=AL-Shudeifat,%20Mohammad%20A.&rft.date=2017-03-01&rft.volume=52&rft.issue=4-5&rft.spage=763&rft.epage=779&rft.pages=763-779&rft.issn=0025-6455&rft.eissn=1572-9648&rft_id=info:doi/10.1007/s11012-016-0422-2&rft_dat=%3Cproquest_cross%3E1880788210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880788210&rft_id=info:pmid/&rfr_iscdi=true |