Reliability of repairable reserved systems with failure aftereffect
We propose new models for analyzing the reliability of repairable systems with failure aftereffect, when the probability distribution of an element’s time to failure changes only during the time when another element is being repaired. The key idea here is the so-called coupling principle for various...
Gespeichert in:
Veröffentlicht in: | Automation and remote control 2017, Vol.78 (1), p.113-124 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | 1 |
container_start_page | 113 |
container_title | Automation and remote control |
container_volume | 78 |
creator | Gurov, S. V. Utkin, L. V. |
description | We propose new models for analyzing the reliability of repairable systems with failure aftereffect, when the probability distribution of an element’s time to failure changes only during the time when another element is being repaired. The key idea here is the so-called coupling principle for various probability distributions when the system’s operation conditions or the “residual lifetime preservation condition” change. We show a method for constructing a system of integral equations as a universal tool for modeling the reliability of systems under the assumption that time to failure of each element obeys the Weibull distribution. |
doi_str_mv | 10.1134/S000511791701009X |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880779273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880779273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-21b3780832b15fe33df8e3ad7975361f916964e06f1e08bf9d391e1666d7835a3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFb_AG8Bz9GZTLMfRylqhYLgB3gLm2ZWt6RN3d0o_e9NqQdBPM3A-703wxPiHOESkSZXTwBQIiqDChDAvB6IEUrQOQEVh2K0k_OdfixOYlwCIEJBIzF95Nbb2rc-bbPOZYE31gdbtzyskcMnN1ncxsSrmH359J4569s-cGZd4sDO8SKdiiNn28hnP3MsXm5vnqezfP5wdz-9nucLkpOUF1iT0qCpqLF0TNQ4zWQbZVRJEp1BaeSEQTpk0LUzDRlklFI2SlNpaSwu9rmb0H30HFO17PqwHk5WqDUoZQpFA4V7ahG6GIcXq03wKxu2FUK166r609XgKfaeOLDrNw6_kv81fQMky2pG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880779273</pqid></control><display><type>article</type><title>Reliability of repairable reserved systems with failure aftereffect</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gurov, S. V. ; Utkin, L. V.</creator><creatorcontrib>Gurov, S. V. ; Utkin, L. V.</creatorcontrib><description>We propose new models for analyzing the reliability of repairable systems with failure aftereffect, when the probability distribution of an element’s time to failure changes only during the time when another element is being repaired. The key idea here is the so-called coupling principle for various probability distributions when the system’s operation conditions or the “residual lifetime preservation condition” change. We show a method for constructing a system of integral equations as a universal tool for modeling the reliability of systems under the assumption that time to failure of each element obeys the Weibull distribution.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S000511791701009X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Failure analysis ; Integral equations ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Reliability ; Reliability analysis ; Robotics ; Safety ; System reliability ; Systems Theory ; Technical Diagnostics ; Viability ; Weibull distribution</subject><ispartof>Automation and remote control, 2017, Vol.78 (1), p.113-124</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-21b3780832b15fe33df8e3ad7975361f916964e06f1e08bf9d391e1666d7835a3</citedby><cites>FETCH-LOGICAL-c364t-21b3780832b15fe33df8e3ad7975361f916964e06f1e08bf9d391e1666d7835a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S000511791701009X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S000511791701009X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gurov, S. V.</creatorcontrib><creatorcontrib>Utkin, L. V.</creatorcontrib><title>Reliability of repairable reserved systems with failure aftereffect</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>We propose new models for analyzing the reliability of repairable systems with failure aftereffect, when the probability distribution of an element’s time to failure changes only during the time when another element is being repaired. The key idea here is the so-called coupling principle for various probability distributions when the system’s operation conditions or the “residual lifetime preservation condition” change. We show a method for constructing a system of integral equations as a universal tool for modeling the reliability of systems under the assumption that time to failure of each element obeys the Weibull distribution.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Failure analysis</subject><subject>Integral equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Robotics</subject><subject>Safety</subject><subject>System reliability</subject><subject>Systems Theory</subject><subject>Technical Diagnostics</subject><subject>Viability</subject><subject>Weibull distribution</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFb_AG8Bz9GZTLMfRylqhYLgB3gLm2ZWt6RN3d0o_e9NqQdBPM3A-703wxPiHOESkSZXTwBQIiqDChDAvB6IEUrQOQEVh2K0k_OdfixOYlwCIEJBIzF95Nbb2rc-bbPOZYE31gdbtzyskcMnN1ncxsSrmH359J4569s-cGZd4sDO8SKdiiNn28hnP3MsXm5vnqezfP5wdz-9nucLkpOUF1iT0qCpqLF0TNQ4zWQbZVRJEp1BaeSEQTpk0LUzDRlklFI2SlNpaSwu9rmb0H30HFO17PqwHk5WqDUoZQpFA4V7ahG6GIcXq03wKxu2FUK166r609XgKfaeOLDrNw6_kv81fQMky2pG</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Gurov, S. V.</creator><creator>Utkin, L. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Reliability of repairable reserved systems with failure aftereffect</title><author>Gurov, S. V. ; Utkin, L. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-21b3780832b15fe33df8e3ad7975361f916964e06f1e08bf9d391e1666d7835a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Failure analysis</topic><topic>Integral equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Robotics</topic><topic>Safety</topic><topic>System reliability</topic><topic>Systems Theory</topic><topic>Technical Diagnostics</topic><topic>Viability</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurov, S. V.</creatorcontrib><creatorcontrib>Utkin, L. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurov, S. V.</au><au>Utkin, L. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability of repairable reserved systems with failure aftereffect</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2017</date><risdate>2017</risdate><volume>78</volume><issue>1</issue><spage>113</spage><epage>124</epage><pages>113-124</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>We propose new models for analyzing the reliability of repairable systems with failure aftereffect, when the probability distribution of an element’s time to failure changes only during the time when another element is being repaired. The key idea here is the so-called coupling principle for various probability distributions when the system’s operation conditions or the “residual lifetime preservation condition” change. We show a method for constructing a system of integral equations as a universal tool for modeling the reliability of systems under the assumption that time to failure of each element obeys the Weibull distribution.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S000511791701009X</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0005-1179 |
ispartof | Automation and remote control, 2017, Vol.78 (1), p.113-124 |
issn | 0005-1179 1608-3032 |
language | eng |
recordid | cdi_proquest_journals_1880779273 |
source | SpringerLink Journals - AutoHoldings |
subjects | CAE) and Design Calculus of Variations and Optimal Control Optimization Computer-Aided Engineering (CAD Control Failure analysis Integral equations Mathematics Mathematics and Statistics Mechanical Engineering Mechatronics Reliability Reliability analysis Robotics Safety System reliability Systems Theory Technical Diagnostics Viability Weibull distribution |
title | Reliability of repairable reserved systems with failure aftereffect |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20of%20repairable%20reserved%20systems%20with%20failure%20aftereffect&rft.jtitle=Automation%20and%20remote%20control&rft.au=Gurov,%20S.%20V.&rft.date=2017&rft.volume=78&rft.issue=1&rft.spage=113&rft.epage=124&rft.pages=113-124&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S000511791701009X&rft_dat=%3Cproquest_cross%3E1880779273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880779273&rft_id=info:pmid/&rfr_iscdi=true |