Reliability of repairable reserved systems with failure aftereffect

We propose new models for analyzing the reliability of repairable systems with failure aftereffect, when the probability distribution of an element’s time to failure changes only during the time when another element is being repaired. The key idea here is the so-called coupling principle for various...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation and remote control 2017, Vol.78 (1), p.113-124
Hauptverfasser: Gurov, S. V., Utkin, L. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue 1
container_start_page 113
container_title Automation and remote control
container_volume 78
creator Gurov, S. V.
Utkin, L. V.
description We propose new models for analyzing the reliability of repairable systems with failure aftereffect, when the probability distribution of an element’s time to failure changes only during the time when another element is being repaired. The key idea here is the so-called coupling principle for various probability distributions when the system’s operation conditions or the “residual lifetime preservation condition” change. We show a method for constructing a system of integral equations as a universal tool for modeling the reliability of systems under the assumption that time to failure of each element obeys the Weibull distribution.
doi_str_mv 10.1134/S000511791701009X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880779273</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880779273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-21b3780832b15fe33df8e3ad7975361f916964e06f1e08bf9d391e1666d7835a3</originalsourceid><addsrcrecordid>eNp1kM1Lw0AQxRdRsFb_AG8Bz9GZTLMfRylqhYLgB3gLm2ZWt6RN3d0o_e9NqQdBPM3A-703wxPiHOESkSZXTwBQIiqDChDAvB6IEUrQOQEVh2K0k_OdfixOYlwCIEJBIzF95Nbb2rc-bbPOZYE31gdbtzyskcMnN1ncxsSrmH359J4569s-cGZd4sDO8SKdiiNn28hnP3MsXm5vnqezfP5wdz-9nucLkpOUF1iT0qCpqLF0TNQ4zWQbZVRJEp1BaeSEQTpk0LUzDRlklFI2SlNpaSwu9rmb0H30HFO17PqwHk5WqDUoZQpFA4V7ahG6GIcXq03wKxu2FUK166r609XgKfaeOLDrNw6_kv81fQMky2pG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880779273</pqid></control><display><type>article</type><title>Reliability of repairable reserved systems with failure aftereffect</title><source>SpringerLink Journals - AutoHoldings</source><creator>Gurov, S. V. ; Utkin, L. V.</creator><creatorcontrib>Gurov, S. V. ; Utkin, L. V.</creatorcontrib><description>We propose new models for analyzing the reliability of repairable systems with failure aftereffect, when the probability distribution of an element’s time to failure changes only during the time when another element is being repaired. The key idea here is the so-called coupling principle for various probability distributions when the system’s operation conditions or the “residual lifetime preservation condition” change. We show a method for constructing a system of integral equations as a universal tool for modeling the reliability of systems under the assumption that time to failure of each element obeys the Weibull distribution.</description><identifier>ISSN: 0005-1179</identifier><identifier>EISSN: 1608-3032</identifier><identifier>DOI: 10.1134/S000511791701009X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>CAE) and Design ; Calculus of Variations and Optimal Control; Optimization ; Computer-Aided Engineering (CAD ; Control ; Failure analysis ; Integral equations ; Mathematics ; Mathematics and Statistics ; Mechanical Engineering ; Mechatronics ; Reliability ; Reliability analysis ; Robotics ; Safety ; System reliability ; Systems Theory ; Technical Diagnostics ; Viability ; Weibull distribution</subject><ispartof>Automation and remote control, 2017, Vol.78 (1), p.113-124</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-21b3780832b15fe33df8e3ad7975361f916964e06f1e08bf9d391e1666d7835a3</citedby><cites>FETCH-LOGICAL-c364t-21b3780832b15fe33df8e3ad7975361f916964e06f1e08bf9d391e1666d7835a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S000511791701009X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S000511791701009X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gurov, S. V.</creatorcontrib><creatorcontrib>Utkin, L. V.</creatorcontrib><title>Reliability of repairable reserved systems with failure aftereffect</title><title>Automation and remote control</title><addtitle>Autom Remote Control</addtitle><description>We propose new models for analyzing the reliability of repairable systems with failure aftereffect, when the probability distribution of an element’s time to failure changes only during the time when another element is being repaired. The key idea here is the so-called coupling principle for various probability distributions when the system’s operation conditions or the “residual lifetime preservation condition” change. We show a method for constructing a system of integral equations as a universal tool for modeling the reliability of systems under the assumption that time to failure of each element obeys the Weibull distribution.</description><subject>CAE) and Design</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Computer-Aided Engineering (CAD</subject><subject>Control</subject><subject>Failure analysis</subject><subject>Integral equations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Mechanical Engineering</subject><subject>Mechatronics</subject><subject>Reliability</subject><subject>Reliability analysis</subject><subject>Robotics</subject><subject>Safety</subject><subject>System reliability</subject><subject>Systems Theory</subject><subject>Technical Diagnostics</subject><subject>Viability</subject><subject>Weibull distribution</subject><issn>0005-1179</issn><issn>1608-3032</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1Lw0AQxRdRsFb_AG8Bz9GZTLMfRylqhYLgB3gLm2ZWt6RN3d0o_e9NqQdBPM3A-703wxPiHOESkSZXTwBQIiqDChDAvB6IEUrQOQEVh2K0k_OdfixOYlwCIEJBIzF95Nbb2rc-bbPOZYE31gdbtzyskcMnN1ncxsSrmH359J4569s-cGZd4sDO8SKdiiNn28hnP3MsXm5vnqezfP5wdz-9nucLkpOUF1iT0qCpqLF0TNQ4zWQbZVRJEp1BaeSEQTpk0LUzDRlklFI2SlNpaSwu9rmb0H30HFO17PqwHk5WqDUoZQpFA4V7ahG6GIcXq03wKxu2FUK166r609XgKfaeOLDrNw6_kv81fQMky2pG</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Gurov, S. V.</creator><creator>Utkin, L. V.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Reliability of repairable reserved systems with failure aftereffect</title><author>Gurov, S. V. ; Utkin, L. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-21b3780832b15fe33df8e3ad7975361f916964e06f1e08bf9d391e1666d7835a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>CAE) and Design</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Computer-Aided Engineering (CAD</topic><topic>Control</topic><topic>Failure analysis</topic><topic>Integral equations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Mechanical Engineering</topic><topic>Mechatronics</topic><topic>Reliability</topic><topic>Reliability analysis</topic><topic>Robotics</topic><topic>Safety</topic><topic>System reliability</topic><topic>Systems Theory</topic><topic>Technical Diagnostics</topic><topic>Viability</topic><topic>Weibull distribution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gurov, S. V.</creatorcontrib><creatorcontrib>Utkin, L. V.</creatorcontrib><collection>CrossRef</collection><jtitle>Automation and remote control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gurov, S. V.</au><au>Utkin, L. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reliability of repairable reserved systems with failure aftereffect</atitle><jtitle>Automation and remote control</jtitle><stitle>Autom Remote Control</stitle><date>2017</date><risdate>2017</risdate><volume>78</volume><issue>1</issue><spage>113</spage><epage>124</epage><pages>113-124</pages><issn>0005-1179</issn><eissn>1608-3032</eissn><abstract>We propose new models for analyzing the reliability of repairable systems with failure aftereffect, when the probability distribution of an element’s time to failure changes only during the time when another element is being repaired. The key idea here is the so-called coupling principle for various probability distributions when the system’s operation conditions or the “residual lifetime preservation condition” change. We show a method for constructing a system of integral equations as a universal tool for modeling the reliability of systems under the assumption that time to failure of each element obeys the Weibull distribution.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S000511791701009X</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0005-1179
ispartof Automation and remote control, 2017, Vol.78 (1), p.113-124
issn 0005-1179
1608-3032
language eng
recordid cdi_proquest_journals_1880779273
source SpringerLink Journals - AutoHoldings
subjects CAE) and Design
Calculus of Variations and Optimal Control
Optimization
Computer-Aided Engineering (CAD
Control
Failure analysis
Integral equations
Mathematics
Mathematics and Statistics
Mechanical Engineering
Mechatronics
Reliability
Reliability analysis
Robotics
Safety
System reliability
Systems Theory
Technical Diagnostics
Viability
Weibull distribution
title Reliability of repairable reserved systems with failure aftereffect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T14%3A16%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reliability%20of%20repairable%20reserved%20systems%20with%20failure%20aftereffect&rft.jtitle=Automation%20and%20remote%20control&rft.au=Gurov,%20S.%20V.&rft.date=2017&rft.volume=78&rft.issue=1&rft.spage=113&rft.epage=124&rft.pages=113-124&rft.issn=0005-1179&rft.eissn=1608-3032&rft_id=info:doi/10.1134/S000511791701009X&rft_dat=%3Cproquest_cross%3E1880779273%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880779273&rft_id=info:pmid/&rfr_iscdi=true