Standing Waves in Near-Parallel Vortex Filaments
A model derived in (Klein et al., J Fluid Mech 288:201–248, 1995 ) for n near-parallel vortex filaments in a three dimensional fluid region takes into consideration the pairwise interaction between the filaments along with an approximation for motion by self-induction. The same system of equations a...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2017-02, Vol.350 (1), p.175-203 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 203 |
---|---|
container_issue | 1 |
container_start_page | 175 |
container_title | Communications in mathematical physics |
container_volume | 350 |
creator | Craig, Walter García-Azpeitia, Carlos Yang, Chi-Ru |
description | A model derived in (Klein et al., J Fluid Mech 288:201–248,
1995
) for
n
near-parallel vortex filaments in a three dimensional fluid region takes into consideration the pairwise interaction between the filaments along with an approximation for motion by self-induction. The same system of equations appears in descriptions of the fine structure of vortex filaments in the Gross–Pitaevski model of Bose–Einstein condensates. In this paper we construct families of standing waves for this model, in the form of
n
co-rotating near-parallel vortex filaments that are situated in a central configuration. This result applies to any pair of vortex filaments with the same circulation, corresponding to the case
n
= 2. The model equations can be formulated as a system of Hamiltonian PDEs, and the construction of standing waves is a small divisor problem. The methods are a combination of the analysis of infinite dimensional Hamiltonian dynamical systems and linear theory related to Anderson localization. The main technique of the construction is the Nash–Moser method applied to a Lyapunov–Schmidt reduction, giving rise to a bifurcation equation over a Cantor set of parameters. |
doi_str_mv | 10.1007/s00220-016-2781-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880779197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880779197</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-510bd80c06a6dca0edb358567b1c8ab27e6d9a77e5dd29a1c882ed303fabd50e3</originalsourceid><addsrcrecordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59WZXbObHKVYFYoKfh2XSXZaUtKk7qYS_70p8eDF08DL-7wDjxDnCJcIYK8igFIgAY1UNkPZH4gJXmslIUdzKCYACFIbNMfiJMY1AOTKmImAl44aXzWr5IO-OCZVkzwyBflMgeqa6-S9DR33ybyqacNNF0_F0ZLqyGe_dyre5revs3u5eLp7mN0sZKnRdDJFKHwGJRgyviRgX-g0S40tsMyoUJaNz8laTr1XOQ1hpthr0EsqfAqsp-Ji3N2G9nPHsXPrdhea4aXDLANrc8zt0MKxVYY2xsBLtw3VhsK3Q3B7MW4U4wYxbi_G9QOjRiYO3WbF4c_yv9APN-dlfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880779197</pqid></control><display><type>article</type><title>Standing Waves in Near-Parallel Vortex Filaments</title><source>SpringerNature Journals</source><creator>Craig, Walter ; García-Azpeitia, Carlos ; Yang, Chi-Ru</creator><creatorcontrib>Craig, Walter ; García-Azpeitia, Carlos ; Yang, Chi-Ru</creatorcontrib><description>A model derived in (Klein et al., J Fluid Mech 288:201–248,
1995
) for
n
near-parallel vortex filaments in a three dimensional fluid region takes into consideration the pairwise interaction between the filaments along with an approximation for motion by self-induction. The same system of equations appears in descriptions of the fine structure of vortex filaments in the Gross–Pitaevski model of Bose–Einstein condensates. In this paper we construct families of standing waves for this model, in the form of
n
co-rotating near-parallel vortex filaments that are situated in a central configuration. This result applies to any pair of vortex filaments with the same circulation, corresponding to the case
n
= 2. The model equations can be formulated as a system of Hamiltonian PDEs, and the construction of standing waves is a small divisor problem. The methods are a combination of the analysis of infinite dimensional Hamiltonian dynamical systems and linear theory related to Anderson localization. The main technique of the construction is the Nash–Moser method applied to a Lyapunov–Schmidt reduction, giving rise to a bifurcation equation over a Cantor set of parameters.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-016-2781-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Anderson localization ; Bifurcations ; Circulation ; Classical and Quantum Gravitation ; Complex Systems ; Computational fluid dynamics ; Dimensional analysis ; Filaments ; Fine structure ; Mathematical and Computational Physics ; Mathematical models ; Mathematical Physics ; Oscillators ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Standing waves ; Superconductors ; Theoretical ; Vortex filaments ; Vortices</subject><ispartof>Communications in mathematical physics, 2017-02, Vol.350 (1), p.175-203</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-510bd80c06a6dca0edb358567b1c8ab27e6d9a77e5dd29a1c882ed303fabd50e3</citedby><cites>FETCH-LOGICAL-c316t-510bd80c06a6dca0edb358567b1c8ab27e6d9a77e5dd29a1c882ed303fabd50e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-016-2781-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-016-2781-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Craig, Walter</creatorcontrib><creatorcontrib>García-Azpeitia, Carlos</creatorcontrib><creatorcontrib>Yang, Chi-Ru</creatorcontrib><title>Standing Waves in Near-Parallel Vortex Filaments</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>A model derived in (Klein et al., J Fluid Mech 288:201–248,
1995
) for
n
near-parallel vortex filaments in a three dimensional fluid region takes into consideration the pairwise interaction between the filaments along with an approximation for motion by self-induction. The same system of equations appears in descriptions of the fine structure of vortex filaments in the Gross–Pitaevski model of Bose–Einstein condensates. In this paper we construct families of standing waves for this model, in the form of
n
co-rotating near-parallel vortex filaments that are situated in a central configuration. This result applies to any pair of vortex filaments with the same circulation, corresponding to the case
n
= 2. The model equations can be formulated as a system of Hamiltonian PDEs, and the construction of standing waves is a small divisor problem. The methods are a combination of the analysis of infinite dimensional Hamiltonian dynamical systems and linear theory related to Anderson localization. The main technique of the construction is the Nash–Moser method applied to a Lyapunov–Schmidt reduction, giving rise to a bifurcation equation over a Cantor set of parameters.</description><subject>Anderson localization</subject><subject>Bifurcations</subject><subject>Circulation</subject><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Computational fluid dynamics</subject><subject>Dimensional analysis</subject><subject>Filaments</subject><subject>Fine structure</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematical Physics</subject><subject>Oscillators</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Standing waves</subject><subject>Superconductors</subject><subject>Theoretical</subject><subject>Vortex filaments</subject><subject>Vortices</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1Lw0AQhhdRsFZ_gLeA59WZXbObHKVYFYoKfh2XSXZaUtKk7qYS_70p8eDF08DL-7wDjxDnCJcIYK8igFIgAY1UNkPZH4gJXmslIUdzKCYACFIbNMfiJMY1AOTKmImAl44aXzWr5IO-OCZVkzwyBflMgeqa6-S9DR33ybyqacNNF0_F0ZLqyGe_dyre5revs3u5eLp7mN0sZKnRdDJFKHwGJRgyviRgX-g0S40tsMyoUJaNz8laTr1XOQ1hpthr0EsqfAqsp-Ji3N2G9nPHsXPrdhea4aXDLANrc8zt0MKxVYY2xsBLtw3VhsK3Q3B7MW4U4wYxbi_G9QOjRiYO3WbF4c_yv9APN-dlfw</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Craig, Walter</creator><creator>García-Azpeitia, Carlos</creator><creator>Yang, Chi-Ru</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170201</creationdate><title>Standing Waves in Near-Parallel Vortex Filaments</title><author>Craig, Walter ; García-Azpeitia, Carlos ; Yang, Chi-Ru</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-510bd80c06a6dca0edb358567b1c8ab27e6d9a77e5dd29a1c882ed303fabd50e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anderson localization</topic><topic>Bifurcations</topic><topic>Circulation</topic><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Computational fluid dynamics</topic><topic>Dimensional analysis</topic><topic>Filaments</topic><topic>Fine structure</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematical Physics</topic><topic>Oscillators</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Standing waves</topic><topic>Superconductors</topic><topic>Theoretical</topic><topic>Vortex filaments</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Craig, Walter</creatorcontrib><creatorcontrib>García-Azpeitia, Carlos</creatorcontrib><creatorcontrib>Yang, Chi-Ru</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Craig, Walter</au><au>García-Azpeitia, Carlos</au><au>Yang, Chi-Ru</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Standing Waves in Near-Parallel Vortex Filaments</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>350</volume><issue>1</issue><spage>175</spage><epage>203</epage><pages>175-203</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>A model derived in (Klein et al., J Fluid Mech 288:201–248,
1995
) for
n
near-parallel vortex filaments in a three dimensional fluid region takes into consideration the pairwise interaction between the filaments along with an approximation for motion by self-induction. The same system of equations appears in descriptions of the fine structure of vortex filaments in the Gross–Pitaevski model of Bose–Einstein condensates. In this paper we construct families of standing waves for this model, in the form of
n
co-rotating near-parallel vortex filaments that are situated in a central configuration. This result applies to any pair of vortex filaments with the same circulation, corresponding to the case
n
= 2. The model equations can be formulated as a system of Hamiltonian PDEs, and the construction of standing waves is a small divisor problem. The methods are a combination of the analysis of infinite dimensional Hamiltonian dynamical systems and linear theory related to Anderson localization. The main technique of the construction is the Nash–Moser method applied to a Lyapunov–Schmidt reduction, giving rise to a bifurcation equation over a Cantor set of parameters.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-016-2781-x</doi><tpages>29</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2017-02, Vol.350 (1), p.175-203 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_1880779197 |
source | SpringerNature Journals |
subjects | Anderson localization Bifurcations Circulation Classical and Quantum Gravitation Complex Systems Computational fluid dynamics Dimensional analysis Filaments Fine structure Mathematical and Computational Physics Mathematical models Mathematical Physics Oscillators Physics Physics and Astronomy Quantum Physics Relativity Theory Standing waves Superconductors Theoretical Vortex filaments Vortices |
title | Standing Waves in Near-Parallel Vortex Filaments |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T01%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Standing%20Waves%20in%20Near-Parallel%20Vortex%20Filaments&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Craig,%20Walter&rft.date=2017-02-01&rft.volume=350&rft.issue=1&rft.spage=175&rft.epage=203&rft.pages=175-203&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-016-2781-x&rft_dat=%3Cproquest_cross%3E1880779197%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880779197&rft_id=info:pmid/&rfr_iscdi=true |