Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains

The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. We analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2017-02, Vol.166 (3-4), p.841-875
Hauptverfasser: Mendl, Christian B., Spohn, Herbert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 875
container_issue 3-4
container_start_page 841
container_title Journal of statistical physics
container_volume 166
creator Mendl, Christian B.
Spohn, Herbert
description The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. We analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t 1 / 3 and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.
doi_str_mv 10.1007/s10955-016-1626-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880777202</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A551029402</galeid><sourcerecordid>A551029402</sourcerecordid><originalsourceid>FETCH-LOGICAL-c421t-66aeb72d85c3d75bccb5459058d311737deb181b8d4d952e8eade1538bf1abe23</originalsourceid><addsrcrecordid>eNp1kE9LwzAYh4MoOKcfwFvBq5l506ZJj2M4HQiCf_AY0iTdOrdkJq3gtze1HrxIDoFffk_elwehSyAzIITfRCAVY5hAiaGkJWZHaAKMU1yVkB-jCSGU4oIDO0VnMW4JIZWo2AStnjdev8fr7EkF2yjdtd5lb-rTpkg5ky36EKzrsuWu112vhueYNT5kc7dRYe9dq7PFRrUunqOTRu2ivfi9p-h1efuyuMcPj3erxfwB64JCh8tS2ZpTI5jODWe11jUrWEWYMDkAz7mxNQiohSlMxagVVhkLLBd1A6q2NJ-iq_HfQ_AfvY2d3Po-uDRSghCEc07J0JqNrbXaWdm6xndB6XSM3bfaO9u0KZ8zBoRWxQ8AI6CDjzG5kIfQ7lX4kkDkoFiOimVSLAfFkiWGjkxMXbe24c8q_0LfMNJ9nA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880777202</pqid></control><display><type>article</type><title>Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains</title><source>SpringerNature Journals</source><creator>Mendl, Christian B. ; Spohn, Herbert</creator><creatorcontrib>Mendl, Christian B. ; Spohn, Herbert</creatorcontrib><description>The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. We analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t 1 / 3 and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-016-1626-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Anharmonicity ; Cauchy problems ; Domain walls ; Euler-Lagrange equation ; Mathematical and Computational Physics ; Molecular chains ; Molecular dynamics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Rarefaction ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2017-02, Vol.166 (3-4), p.841-875</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c421t-66aeb72d85c3d75bccb5459058d311737deb181b8d4d952e8eade1538bf1abe23</citedby><cites>FETCH-LOGICAL-c421t-66aeb72d85c3d75bccb5459058d311737deb181b8d4d952e8eade1538bf1abe23</cites><orcidid>0000-0002-6386-0230</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-016-1626-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-016-1626-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mendl, Christian B.</creatorcontrib><creatorcontrib>Spohn, Herbert</creatorcontrib><title>Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. We analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t 1 / 3 and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.</description><subject>Anharmonicity</subject><subject>Cauchy problems</subject><subject>Domain walls</subject><subject>Euler-Lagrange equation</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular chains</subject><subject>Molecular dynamics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Rarefaction</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LwzAYh4MoOKcfwFvBq5l506ZJj2M4HQiCf_AY0iTdOrdkJq3gtze1HrxIDoFffk_elwehSyAzIITfRCAVY5hAiaGkJWZHaAKMU1yVkB-jCSGU4oIDO0VnMW4JIZWo2AStnjdev8fr7EkF2yjdtd5lb-rTpkg5ky36EKzrsuWu112vhueYNT5kc7dRYe9dq7PFRrUunqOTRu2ivfi9p-h1efuyuMcPj3erxfwB64JCh8tS2ZpTI5jODWe11jUrWEWYMDkAz7mxNQiohSlMxagVVhkLLBd1A6q2NJ-iq_HfQ_AfvY2d3Po-uDRSghCEc07J0JqNrbXaWdm6xndB6XSM3bfaO9u0KZ8zBoRWxQ8AI6CDjzG5kIfQ7lX4kkDkoFiOimVSLAfFkiWGjkxMXbe24c8q_0LfMNJ9nA</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Mendl, Christian B.</creator><creator>Spohn, Herbert</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6386-0230</orcidid></search><sort><creationdate>20170201</creationdate><title>Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains</title><author>Mendl, Christian B. ; Spohn, Herbert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c421t-66aeb72d85c3d75bccb5459058d311737deb181b8d4d952e8eade1538bf1abe23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anharmonicity</topic><topic>Cauchy problems</topic><topic>Domain walls</topic><topic>Euler-Lagrange equation</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular chains</topic><topic>Molecular dynamics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Rarefaction</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mendl, Christian B.</creatorcontrib><creatorcontrib>Spohn, Herbert</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mendl, Christian B.</au><au>Spohn, Herbert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>166</volume><issue>3-4</issue><spage>841</spage><epage>875</epage><pages>841-875</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>The nonequilibrium dynamics of anharmonic chains is studied by imposing an initial domain-wall state, in which the two half lattices are prepared in equilibrium with distinct parameters. We analyse the Riemann problem for the corresponding Euler equations and, in specific cases, compare with molecular dynamics. Additionally, the fluctuations of time-integrated currents are investigated. In analogy with the KPZ equation, their typical fluctuations should be of size t 1 / 3 and have a Tracy–Widom GUE distributed amplitude. The proper extension to anharmonic chains is explained and tested through molecular dynamics. Our results are calibrated against the stochastic LeRoux lattice gas.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-016-1626-5</doi><tpages>35</tpages><orcidid>https://orcid.org/0000-0002-6386-0230</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2017-02, Vol.166 (3-4), p.841-875
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_1880777202
source SpringerNature Journals
subjects Anharmonicity
Cauchy problems
Domain walls
Euler-Lagrange equation
Mathematical and Computational Physics
Molecular chains
Molecular dynamics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Rarefaction
Statistical Physics and Dynamical Systems
Theoretical
title Shocks, Rarefaction Waves, and Current Fluctuations for Anharmonic Chains
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T02%3A29%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shocks,%20Rarefaction%20Waves,%20and%20Current%20Fluctuations%20for%20Anharmonic%20Chains&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Mendl,%20Christian%20B.&rft.date=2017-02-01&rft.volume=166&rft.issue=3-4&rft.spage=841&rft.epage=875&rft.pages=841-875&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-016-1626-5&rft_dat=%3Cgale_proqu%3EA551029402%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880777202&rft_id=info:pmid/&rft_galeid=A551029402&rfr_iscdi=true