Low Cost Chitosan Biopolymer for Environmental Use Made from Abundant Shrimp Wastes
Chitosan, an important biopolymer with many uses, is made by deacetylation of chitin. Classical hydrolysis at high temperatures (above 100 °C) in 50 % concentrated sodium hydroxide during several hours produces chitosan, a poly-beta-glucosamine. This chemical deacetylation step is often performed un...
Gespeichert in:
Veröffentlicht in: | Waste and biomass valorization 2017-03, Vol.8 (2), p.401-406 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 406 |
---|---|
container_issue | 2 |
container_start_page | 401 |
container_title | Waste and biomass valorization |
container_volume | 8 |
creator | Kadouche, S. Farhat, M. Lounici, H. Fiallo, M. Sharrock, P. Mecherri, M. Hadioui, M. |
description | Chitosan, an important biopolymer with many uses, is made by deacetylation of chitin. Classical hydrolysis at high temperatures (above 100 °C) in 50 % concentrated sodium hydroxide during several hours produces chitosan, a poly-beta-glucosamine. This chemical deacetylation step is often performed under pressure in boiling ethyleneglycol and tends to degrade polymer chain length, thus the interesting polymer properties. It is convenient to search for a more economical production pathway in order to make chitosan available for environmental applications, such as use in water suspended matter flocculation. Chitin was extracted from the exoskeletons of shrimps and its deacetylation kinetics was followed for 35 days at 20 and 35 °C. The results obtained using different techniques (conductivity, viscometry,
13
C NMR and thermogravimetry) showed that the deacetylation degree of chitin increased with the incubation time reaching 99 and 88 % at 35 and 20 °C, respectively, after 35 days. Moreover, during the incubation time, the molecular weight of chitosan showed moderate decrease compared to deacetylated chitin at high temperature. Clarification or urban waste water with chitosan biopolymer demonstrated good results at 1.5 mg/L concentrations. |
doi_str_mv | 10.1007/s12649-016-9593-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880777094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880777094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-ea783ef4dd34327a97f4c6a18c719091e0b3492c16f51a8201c7723e1b0fb9b33</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EElXpD2CzxBzw2U4cjyUqH1IRQ6lgs5zEpqkaO9gpqP-eVEGIhelueJ_3Tg9Cl0CugRBxE4FmXCYEskSmkiX0BE0gFyKhWfp2-rtzOEezGLeEEAqQUyYmaLX0X7jwscfFpul91A7fNr7zu0NrArY-4IX7bIJ3rXG93uF1NPhJ1wbb4Fs8L_eu1q7Hq01o2g6_6tibeIHOrN5FM_uZU7S-W7wUD8ny-f6xmC-TiqWsT4wWOTOW1zXjjAotheVVpiGvBEgiwZCScUkryGwKOqcEKiEoM1ASW8qSsSm6Gnu74D_2JvZq6_fBDScV5DkRQhDJhxSMqSr4GIOxqht-1eGggKijPjXqU4M-ddSn6MDQkYlD1r2b8Kf5X-gb9oJxiQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880777094</pqid></control><display><type>article</type><title>Low Cost Chitosan Biopolymer for Environmental Use Made from Abundant Shrimp Wastes</title><source>SpringerNature Journals</source><creator>Kadouche, S. ; Farhat, M. ; Lounici, H. ; Fiallo, M. ; Sharrock, P. ; Mecherri, M. ; Hadioui, M.</creator><creatorcontrib>Kadouche, S. ; Farhat, M. ; Lounici, H. ; Fiallo, M. ; Sharrock, P. ; Mecherri, M. ; Hadioui, M.</creatorcontrib><description>Chitosan, an important biopolymer with many uses, is made by deacetylation of chitin. Classical hydrolysis at high temperatures (above 100 °C) in 50 % concentrated sodium hydroxide during several hours produces chitosan, a poly-beta-glucosamine. This chemical deacetylation step is often performed under pressure in boiling ethyleneglycol and tends to degrade polymer chain length, thus the interesting polymer properties. It is convenient to search for a more economical production pathway in order to make chitosan available for environmental applications, such as use in water suspended matter flocculation. Chitin was extracted from the exoskeletons of shrimps and its deacetylation kinetics was followed for 35 days at 20 and 35 °C. The results obtained using different techniques (conductivity, viscometry,
13
C NMR and thermogravimetry) showed that the deacetylation degree of chitin increased with the incubation time reaching 99 and 88 % at 35 and 20 °C, respectively, after 35 days. Moreover, during the incubation time, the molecular weight of chitosan showed moderate decrease compared to deacetylated chitin at high temperature. Clarification or urban waste water with chitosan biopolymer demonstrated good results at 1.5 mg/L concentrations.</description><identifier>ISSN: 1877-2641</identifier><identifier>EISSN: 1877-265X</identifier><identifier>DOI: 10.1007/s12649-016-9593-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Biopolymers ; Chitin ; Chitosan ; Deacetylation ; Engineering ; Environment ; Environmental assessment ; Environmental Engineering/Biotechnology ; Exoskeletons ; Flocculation ; High temperature ; Industrial Pollution Prevention ; Municipal waste management ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Original Paper ; Reaction kinetics ; Renewable and Green Energy ; Shrimps ; Sodium hydroxide ; Thermogravimetry ; Viscometry ; Waste Management/Waste Technology ; Wastewater</subject><ispartof>Waste and biomass valorization, 2017-03, Vol.8 (2), p.401-406</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-ea783ef4dd34327a97f4c6a18c719091e0b3492c16f51a8201c7723e1b0fb9b33</citedby><cites>FETCH-LOGICAL-c353t-ea783ef4dd34327a97f4c6a18c719091e0b3492c16f51a8201c7723e1b0fb9b33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12649-016-9593-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12649-016-9593-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kadouche, S.</creatorcontrib><creatorcontrib>Farhat, M.</creatorcontrib><creatorcontrib>Lounici, H.</creatorcontrib><creatorcontrib>Fiallo, M.</creatorcontrib><creatorcontrib>Sharrock, P.</creatorcontrib><creatorcontrib>Mecherri, M.</creatorcontrib><creatorcontrib>Hadioui, M.</creatorcontrib><title>Low Cost Chitosan Biopolymer for Environmental Use Made from Abundant Shrimp Wastes</title><title>Waste and biomass valorization</title><addtitle>Waste Biomass Valor</addtitle><description>Chitosan, an important biopolymer with many uses, is made by deacetylation of chitin. Classical hydrolysis at high temperatures (above 100 °C) in 50 % concentrated sodium hydroxide during several hours produces chitosan, a poly-beta-glucosamine. This chemical deacetylation step is often performed under pressure in boiling ethyleneglycol and tends to degrade polymer chain length, thus the interesting polymer properties. It is convenient to search for a more economical production pathway in order to make chitosan available for environmental applications, such as use in water suspended matter flocculation. Chitin was extracted from the exoskeletons of shrimps and its deacetylation kinetics was followed for 35 days at 20 and 35 °C. The results obtained using different techniques (conductivity, viscometry,
13
C NMR and thermogravimetry) showed that the deacetylation degree of chitin increased with the incubation time reaching 99 and 88 % at 35 and 20 °C, respectively, after 35 days. Moreover, during the incubation time, the molecular weight of chitosan showed moderate decrease compared to deacetylated chitin at high temperature. Clarification or urban waste water with chitosan biopolymer demonstrated good results at 1.5 mg/L concentrations.</description><subject>Biopolymers</subject><subject>Chitin</subject><subject>Chitosan</subject><subject>Deacetylation</subject><subject>Engineering</subject><subject>Environment</subject><subject>Environmental assessment</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Exoskeletons</subject><subject>Flocculation</subject><subject>High temperature</subject><subject>Industrial Pollution Prevention</subject><subject>Municipal waste management</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Original Paper</subject><subject>Reaction kinetics</subject><subject>Renewable and Green Energy</subject><subject>Shrimps</subject><subject>Sodium hydroxide</subject><subject>Thermogravimetry</subject><subject>Viscometry</subject><subject>Waste Management/Waste Technology</subject><subject>Wastewater</subject><issn>1877-2641</issn><issn>1877-265X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EElXpD2CzxBzw2U4cjyUqH1IRQ6lgs5zEpqkaO9gpqP-eVEGIhelueJ_3Tg9Cl0CugRBxE4FmXCYEskSmkiX0BE0gFyKhWfp2-rtzOEezGLeEEAqQUyYmaLX0X7jwscfFpul91A7fNr7zu0NrArY-4IX7bIJ3rXG93uF1NPhJ1wbb4Fs8L_eu1q7Hq01o2g6_6tibeIHOrN5FM_uZU7S-W7wUD8ny-f6xmC-TiqWsT4wWOTOW1zXjjAotheVVpiGvBEgiwZCScUkryGwKOqcEKiEoM1ASW8qSsSm6Gnu74D_2JvZq6_fBDScV5DkRQhDJhxSMqSr4GIOxqht-1eGggKijPjXqU4M-ddSn6MDQkYlD1r2b8Kf5X-gb9oJxiQ</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Kadouche, S.</creator><creator>Farhat, M.</creator><creator>Lounici, H.</creator><creator>Fiallo, M.</creator><creator>Sharrock, P.</creator><creator>Mecherri, M.</creator><creator>Hadioui, M.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Low Cost Chitosan Biopolymer for Environmental Use Made from Abundant Shrimp Wastes</title><author>Kadouche, S. ; Farhat, M. ; Lounici, H. ; Fiallo, M. ; Sharrock, P. ; Mecherri, M. ; Hadioui, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-ea783ef4dd34327a97f4c6a18c719091e0b3492c16f51a8201c7723e1b0fb9b33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biopolymers</topic><topic>Chitin</topic><topic>Chitosan</topic><topic>Deacetylation</topic><topic>Engineering</topic><topic>Environment</topic><topic>Environmental assessment</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Exoskeletons</topic><topic>Flocculation</topic><topic>High temperature</topic><topic>Industrial Pollution Prevention</topic><topic>Municipal waste management</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Original Paper</topic><topic>Reaction kinetics</topic><topic>Renewable and Green Energy</topic><topic>Shrimps</topic><topic>Sodium hydroxide</topic><topic>Thermogravimetry</topic><topic>Viscometry</topic><topic>Waste Management/Waste Technology</topic><topic>Wastewater</topic><toplevel>online_resources</toplevel><creatorcontrib>Kadouche, S.</creatorcontrib><creatorcontrib>Farhat, M.</creatorcontrib><creatorcontrib>Lounici, H.</creatorcontrib><creatorcontrib>Fiallo, M.</creatorcontrib><creatorcontrib>Sharrock, P.</creatorcontrib><creatorcontrib>Mecherri, M.</creatorcontrib><creatorcontrib>Hadioui, M.</creatorcontrib><collection>CrossRef</collection><jtitle>Waste and biomass valorization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kadouche, S.</au><au>Farhat, M.</au><au>Lounici, H.</au><au>Fiallo, M.</au><au>Sharrock, P.</au><au>Mecherri, M.</au><au>Hadioui, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low Cost Chitosan Biopolymer for Environmental Use Made from Abundant Shrimp Wastes</atitle><jtitle>Waste and biomass valorization</jtitle><stitle>Waste Biomass Valor</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>8</volume><issue>2</issue><spage>401</spage><epage>406</epage><pages>401-406</pages><issn>1877-2641</issn><eissn>1877-265X</eissn><abstract>Chitosan, an important biopolymer with many uses, is made by deacetylation of chitin. Classical hydrolysis at high temperatures (above 100 °C) in 50 % concentrated sodium hydroxide during several hours produces chitosan, a poly-beta-glucosamine. This chemical deacetylation step is often performed under pressure in boiling ethyleneglycol and tends to degrade polymer chain length, thus the interesting polymer properties. It is convenient to search for a more economical production pathway in order to make chitosan available for environmental applications, such as use in water suspended matter flocculation. Chitin was extracted from the exoskeletons of shrimps and its deacetylation kinetics was followed for 35 days at 20 and 35 °C. The results obtained using different techniques (conductivity, viscometry,
13
C NMR and thermogravimetry) showed that the deacetylation degree of chitin increased with the incubation time reaching 99 and 88 % at 35 and 20 °C, respectively, after 35 days. Moreover, during the incubation time, the molecular weight of chitosan showed moderate decrease compared to deacetylated chitin at high temperature. Clarification or urban waste water with chitosan biopolymer demonstrated good results at 1.5 mg/L concentrations.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s12649-016-9593-2</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1877-2641 |
ispartof | Waste and biomass valorization, 2017-03, Vol.8 (2), p.401-406 |
issn | 1877-2641 1877-265X |
language | eng |
recordid | cdi_proquest_journals_1880777094 |
source | SpringerNature Journals |
subjects | Biopolymers Chitin Chitosan Deacetylation Engineering Environment Environmental assessment Environmental Engineering/Biotechnology Exoskeletons Flocculation High temperature Industrial Pollution Prevention Municipal waste management NMR Nuclear magnetic resonance Organic chemistry Original Paper Reaction kinetics Renewable and Green Energy Shrimps Sodium hydroxide Thermogravimetry Viscometry Waste Management/Waste Technology Wastewater |
title | Low Cost Chitosan Biopolymer for Environmental Use Made from Abundant Shrimp Wastes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T22%3A04%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%20Cost%20Chitosan%20Biopolymer%20for%20Environmental%20Use%20Made%20from%20Abundant%20Shrimp%20Wastes&rft.jtitle=Waste%20and%20biomass%20valorization&rft.au=Kadouche,%20S.&rft.date=2017-03-01&rft.volume=8&rft.issue=2&rft.spage=401&rft.epage=406&rft.pages=401-406&rft.issn=1877-2641&rft.eissn=1877-265X&rft_id=info:doi/10.1007/s12649-016-9593-2&rft_dat=%3Cproquest_cross%3E1880777094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880777094&rft_id=info:pmid/&rfr_iscdi=true |