Translation Invariant Extensions of Finite Volume Measures

We investigate the following questions: Given a measure μ Λ on configurations on a subset Λ of a lattice L , where a configuration is an element of Ω Λ for some fixed set Ω , does there exist a measure μ on configurations on all of L , invariant under some specified symmetry group of L , such that μ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of statistical physics 2017-02, Vol.166 (3-4), p.765-782
Hauptverfasser: Goldstein, S., Kuna, T., Lebowitz, J. L., Speer, E. R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 782
container_issue 3-4
container_start_page 765
container_title Journal of statistical physics
container_volume 166
creator Goldstein, S.
Kuna, T.
Lebowitz, J. L.
Speer, E. R.
description We investigate the following questions: Given a measure μ Λ on configurations on a subset Λ of a lattice L , where a configuration is an element of Ω Λ for some fixed set Ω , does there exist a measure μ on configurations on all of L , invariant under some specified symmetry group of L , such that μ Λ is its marginal on configurations on Λ ? When the answer is yes, what are the properties, e.g., the entropies, of such measures? Our primary focus is the case in which L = Z d and the symmetries are the translations. For the case in which Λ is an interval in Z we give a simple necessary and sufficient condition, local translation invariance ( LTI ), for extendibility. For LTI measures we construct extensions having maximal entropy, which we show are Gibbs measures; this construction extends to the case in which L is the Bethe lattice. On Z we also consider extensions supported on periodic configurations, which are analyzed using de Bruijn graphs and which include the extensions with minimal entropy. When Λ ⊂ Z is not an interval, or when Λ ⊂ Z d with d > 1 , the LTI condition is necessary but not sufficient for extendibility. For Z d with d > 1 , extendibility is in some sense undecidable.
doi_str_mv 10.1007/s10955-016-1595-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880776397</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A551029400</galeid><sourcerecordid>A551029400</sourcerecordid><originalsourceid>FETCH-LOGICAL-c355t-df1550ecc5fd132732622bc7d6e67a6c1f934ec65a665439bed2bd0b5f5f55f83</originalsourceid><addsrcrecordid>eNp1kEFLAzEQhYMoWKs_wNuC562T7E6y8VZK1ULFS_UastmkbNlma7IV_femrAcv8g4Dw3szj4-QWwozCiDuIwWJmAPlOUWJeXVGJhQFyyWnxTmZADCWl4LiJbmKcQcAspI4IQ-boH3s9ND2Plv5Tx1a7Yds-TVYH9MuZr3LHlvfDjZ777vj3mYvVsdjsPGaXDjdRXvzO6fk7XG5WTzn69en1WK-zk2BOOSNo4hgjUHX0IKJgnHGaiMabrnQ3FAni9IajppzLAtZ24bVDdToktBVxZTcjXcPof842jioXX8MPr1UtKpACF5IkVyz0bXVnVWtd_0QtElq7L41vbeuTfs5IgUmS4AUoGPAhD7GYJ06hHavw7eioE5M1chUJabqxFSdqrAxE5PXb234U-Xf0A-LSHi9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880776397</pqid></control><display><type>article</type><title>Translation Invariant Extensions of Finite Volume Measures</title><source>SpringerLink Journals</source><creator>Goldstein, S. ; Kuna, T. ; Lebowitz, J. L. ; Speer, E. R.</creator><creatorcontrib>Goldstein, S. ; Kuna, T. ; Lebowitz, J. L. ; Speer, E. R.</creatorcontrib><description>We investigate the following questions: Given a measure μ Λ on configurations on a subset Λ of a lattice L , where a configuration is an element of Ω Λ for some fixed set Ω , does there exist a measure μ on configurations on all of L , invariant under some specified symmetry group of L , such that μ Λ is its marginal on configurations on Λ ? When the answer is yes, what are the properties, e.g., the entropies, of such measures? Our primary focus is the case in which L = Z d and the symmetries are the translations. For the case in which Λ is an interval in Z we give a simple necessary and sufficient condition, local translation invariance ( LTI ), for extendibility. For LTI measures we construct extensions having maximal entropy, which we show are Gibbs measures; this construction extends to the case in which L is the Bethe lattice. On Z we also consider extensions supported on periodic configurations, which are analyzed using de Bruijn graphs and which include the extensions with minimal entropy. When Λ ⊂ Z is not an interval, or when Λ ⊂ Z d with d &gt; 1 , the LTI condition is necessary but not sufficient for extendibility. For Z d with d &gt; 1 , extendibility is in some sense undecidable.</description><identifier>ISSN: 0022-4715</identifier><identifier>EISSN: 1572-9613</identifier><identifier>DOI: 10.1007/s10955-016-1595-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Finite volume method ; Mathematical and Computational Physics ; Physical Chemistry ; Physics ; Physics and Astronomy ; Quantum Physics ; Statistical Physics and Dynamical Systems ; Theoretical</subject><ispartof>Journal of statistical physics, 2017-02, Vol.166 (3-4), p.765-782</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>COPYRIGHT 2017 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c355t-df1550ecc5fd132732622bc7d6e67a6c1f934ec65a665439bed2bd0b5f5f55f83</citedby><cites>FETCH-LOGICAL-c355t-df1550ecc5fd132732622bc7d6e67a6c1f934ec65a665439bed2bd0b5f5f55f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10955-016-1595-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10955-016-1595-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Goldstein, S.</creatorcontrib><creatorcontrib>Kuna, T.</creatorcontrib><creatorcontrib>Lebowitz, J. L.</creatorcontrib><creatorcontrib>Speer, E. R.</creatorcontrib><title>Translation Invariant Extensions of Finite Volume Measures</title><title>Journal of statistical physics</title><addtitle>J Stat Phys</addtitle><description>We investigate the following questions: Given a measure μ Λ on configurations on a subset Λ of a lattice L , where a configuration is an element of Ω Λ for some fixed set Ω , does there exist a measure μ on configurations on all of L , invariant under some specified symmetry group of L , such that μ Λ is its marginal on configurations on Λ ? When the answer is yes, what are the properties, e.g., the entropies, of such measures? Our primary focus is the case in which L = Z d and the symmetries are the translations. For the case in which Λ is an interval in Z we give a simple necessary and sufficient condition, local translation invariance ( LTI ), for extendibility. For LTI measures we construct extensions having maximal entropy, which we show are Gibbs measures; this construction extends to the case in which L is the Bethe lattice. On Z we also consider extensions supported on periodic configurations, which are analyzed using de Bruijn graphs and which include the extensions with minimal entropy. When Λ ⊂ Z is not an interval, or when Λ ⊂ Z d with d &gt; 1 , the LTI condition is necessary but not sufficient for extendibility. For Z d with d &gt; 1 , extendibility is in some sense undecidable.</description><subject>Finite volume method</subject><subject>Mathematical and Computational Physics</subject><subject>Physical Chemistry</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Statistical Physics and Dynamical Systems</subject><subject>Theoretical</subject><issn>0022-4715</issn><issn>1572-9613</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLAzEQhYMoWKs_wNuC562T7E6y8VZK1ULFS_UastmkbNlma7IV_femrAcv8g4Dw3szj4-QWwozCiDuIwWJmAPlOUWJeXVGJhQFyyWnxTmZADCWl4LiJbmKcQcAspI4IQ-boH3s9ND2Plv5Tx1a7Yds-TVYH9MuZr3LHlvfDjZ777vj3mYvVsdjsPGaXDjdRXvzO6fk7XG5WTzn69en1WK-zk2BOOSNo4hgjUHX0IKJgnHGaiMabrnQ3FAni9IajppzLAtZ24bVDdToktBVxZTcjXcPof842jioXX8MPr1UtKpACF5IkVyz0bXVnVWtd_0QtElq7L41vbeuTfs5IgUmS4AUoGPAhD7GYJ06hHavw7eioE5M1chUJabqxFSdqrAxE5PXb234U-Xf0A-LSHi9</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Goldstein, S.</creator><creator>Kuna, T.</creator><creator>Lebowitz, J. L.</creator><creator>Speer, E. R.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170201</creationdate><title>Translation Invariant Extensions of Finite Volume Measures</title><author>Goldstein, S. ; Kuna, T. ; Lebowitz, J. L. ; Speer, E. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c355t-df1550ecc5fd132732622bc7d6e67a6c1f934ec65a665439bed2bd0b5f5f55f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Finite volume method</topic><topic>Mathematical and Computational Physics</topic><topic>Physical Chemistry</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Statistical Physics and Dynamical Systems</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goldstein, S.</creatorcontrib><creatorcontrib>Kuna, T.</creatorcontrib><creatorcontrib>Lebowitz, J. L.</creatorcontrib><creatorcontrib>Speer, E. R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of statistical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goldstein, S.</au><au>Kuna, T.</au><au>Lebowitz, J. L.</au><au>Speer, E. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Translation Invariant Extensions of Finite Volume Measures</atitle><jtitle>Journal of statistical physics</jtitle><stitle>J Stat Phys</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>166</volume><issue>3-4</issue><spage>765</spage><epage>782</epage><pages>765-782</pages><issn>0022-4715</issn><eissn>1572-9613</eissn><abstract>We investigate the following questions: Given a measure μ Λ on configurations on a subset Λ of a lattice L , where a configuration is an element of Ω Λ for some fixed set Ω , does there exist a measure μ on configurations on all of L , invariant under some specified symmetry group of L , such that μ Λ is its marginal on configurations on Λ ? When the answer is yes, what are the properties, e.g., the entropies, of such measures? Our primary focus is the case in which L = Z d and the symmetries are the translations. For the case in which Λ is an interval in Z we give a simple necessary and sufficient condition, local translation invariance ( LTI ), for extendibility. For LTI measures we construct extensions having maximal entropy, which we show are Gibbs measures; this construction extends to the case in which L is the Bethe lattice. On Z we also consider extensions supported on periodic configurations, which are analyzed using de Bruijn graphs and which include the extensions with minimal entropy. When Λ ⊂ Z is not an interval, or when Λ ⊂ Z d with d &gt; 1 , the LTI condition is necessary but not sufficient for extendibility. For Z d with d &gt; 1 , extendibility is in some sense undecidable.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10955-016-1595-8</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-4715
ispartof Journal of statistical physics, 2017-02, Vol.166 (3-4), p.765-782
issn 0022-4715
1572-9613
language eng
recordid cdi_proquest_journals_1880776397
source SpringerLink Journals
subjects Finite volume method
Mathematical and Computational Physics
Physical Chemistry
Physics
Physics and Astronomy
Quantum Physics
Statistical Physics and Dynamical Systems
Theoretical
title Translation Invariant Extensions of Finite Volume Measures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T01%3A37%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Translation%20Invariant%20Extensions%20of%20Finite%20Volume%20Measures&rft.jtitle=Journal%20of%20statistical%20physics&rft.au=Goldstein,%20S.&rft.date=2017-02-01&rft.volume=166&rft.issue=3-4&rft.spage=765&rft.epage=782&rft.pages=765-782&rft.issn=0022-4715&rft.eissn=1572-9613&rft_id=info:doi/10.1007/s10955-016-1595-8&rft_dat=%3Cgale_proqu%3EA551029400%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880776397&rft_id=info:pmid/&rft_galeid=A551029400&rfr_iscdi=true