Role of confinements on the melting of Wigner molecules in quantum dots

We explore the stability of a Wigner molecule (WM) formed in confinements with different geometries emulating the role of disorder and analyze the melting (or crossover) of such a system. Building on a recent calculation [D. Bhattacharya, A. Ghosal, Eur. Phys. J. B  86 , 499 (2013)] that discussed t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. B, Condensed matter physics Condensed matter physics, 2016-03, Vol.89 (3), p.1-12, Article 60
Hauptverfasser: Bhattacharya, Dyuti, Filinov, Alexei V., Ghosal, Amit, Bonitz, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 3
container_start_page 1
container_title The European physical journal. B, Condensed matter physics
container_volume 89
creator Bhattacharya, Dyuti
Filinov, Alexei V.
Ghosal, Amit
Bonitz, Michael
description We explore the stability of a Wigner molecule (WM) formed in confinements with different geometries emulating the role of disorder and analyze the melting (or crossover) of such a system. Building on a recent calculation [D. Bhattacharya, A. Ghosal, Eur. Phys. J. B  86 , 499 (2013)] that discussed the effects of irregularities on the thermal crossover in classical systems, we expand our studies in the untested territory by including both the effects of quantum fluctuations and of disorder . Our results, using classical and quantum (path integral) Monte Carlo techniques, unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale  n X . This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows “melting” from the WM to both the classical and quantum “liquids”. An intriguing signature of weakening liquidity with increasing temperature,  T , is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal “melting”. Our analyses carry serious implications for a variety of experiments on many-particle systems − semiconductor heterostructure quantum dots, trapped ions, nanoclusters, colloids and complex plasma.
doi_str_mv 10.1140/epjb/e2016-60448-5
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_1880774211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A530361691</galeid><sourcerecordid>A530361691</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-e75a8b6838724b4f5ebb185e32d175dd7d1af9505fc88212c18baf4e0e7559a83</originalsourceid><addsrcrecordid>eNp1kctKxDAUhosoeH0BVwFXLjomadKmSxl0FARhVFyGtD2pHdpkTFLQtze1Is5Cssjt-04uf5KcE7wghOEr2G6qK6CY5GmOGRMp30uOCMtYnGb5_u-YisPk2PsNxhEl7ChZrW0PyGpUW6M7AwOY4JE1KLwBGqAPnWmn7deuNeDQEOl67MGjzqD3UZkwDqixwZ8mB1r1Hs5--pPk5fbmeXmXPjyu7pfXD2mdlTSkUHAlqlxkoqCsYppDVRHBIaMNKXjTFA1RuuSY61oISmhNRKU0AxxFXiqRnSQXc92ts-8j-CA3dnQmHimJELgoGCUkUouZalUPsjPaBqfq2BoYuvhS0F1cv-ZZ_BySl5NwuSNEJsBHaNXovbx_Wu-ydGZrZ713oOXWdYNyn5JgOaUhpzTkdxryOw3Jo5TNko-wacH9uff_1hcIwo1F</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880774211</pqid></control><display><type>article</type><title>Role of confinements on the melting of Wigner molecules in quantum dots</title><source>Springer Nature - Complete Springer Journals</source><creator>Bhattacharya, Dyuti ; Filinov, Alexei V. ; Ghosal, Amit ; Bonitz, Michael</creator><creatorcontrib>Bhattacharya, Dyuti ; Filinov, Alexei V. ; Ghosal, Amit ; Bonitz, Michael</creatorcontrib><description>We explore the stability of a Wigner molecule (WM) formed in confinements with different geometries emulating the role of disorder and analyze the melting (or crossover) of such a system. Building on a recent calculation [D. Bhattacharya, A. Ghosal, Eur. Phys. J. B  86 , 499 (2013)] that discussed the effects of irregularities on the thermal crossover in classical systems, we expand our studies in the untested territory by including both the effects of quantum fluctuations and of disorder . Our results, using classical and quantum (path integral) Monte Carlo techniques, unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale  n X . This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows “melting” from the WM to both the classical and quantum “liquids”. An intriguing signature of weakening liquidity with increasing temperature,  T , is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal “melting”. Our analyses carry serious implications for a variety of experiments on many-particle systems − semiconductor heterostructure quantum dots, trapped ions, nanoclusters, colloids and complex plasma.</description><identifier>ISSN: 1434-6028</identifier><identifier>EISSN: 1434-6036</identifier><identifier>DOI: 10.1140/epjb/e2016-60448-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Complex Systems ; Condensed Matter Physics ; Dusty plasmas ; Fluid- and Aerodynamics ; Heterostructures ; Melting ; Nanoclusters ; Physics ; Physics and Astronomy ; Quantum dots ; Regular Article ; Solid State Physics</subject><ispartof>The European physical journal. B, Condensed matter physics, 2016-03, Vol.89 (3), p.1-12, Article 60</ispartof><rights>EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2016</rights><rights>COPYRIGHT 2016 Springer</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-e75a8b6838724b4f5ebb185e32d175dd7d1af9505fc88212c18baf4e0e7559a83</citedby><cites>FETCH-LOGICAL-c392t-e75a8b6838724b4f5ebb185e32d175dd7d1af9505fc88212c18baf4e0e7559a83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1140/epjb/e2016-60448-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1140/epjb/e2016-60448-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bhattacharya, Dyuti</creatorcontrib><creatorcontrib>Filinov, Alexei V.</creatorcontrib><creatorcontrib>Ghosal, Amit</creatorcontrib><creatorcontrib>Bonitz, Michael</creatorcontrib><title>Role of confinements on the melting of Wigner molecules in quantum dots</title><title>The European physical journal. B, Condensed matter physics</title><addtitle>Eur. Phys. J. B</addtitle><description>We explore the stability of a Wigner molecule (WM) formed in confinements with different geometries emulating the role of disorder and analyze the melting (or crossover) of such a system. Building on a recent calculation [D. Bhattacharya, A. Ghosal, Eur. Phys. J. B  86 , 499 (2013)] that discussed the effects of irregularities on the thermal crossover in classical systems, we expand our studies in the untested territory by including both the effects of quantum fluctuations and of disorder . Our results, using classical and quantum (path integral) Monte Carlo techniques, unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale  n X . This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows “melting” from the WM to both the classical and quantum “liquids”. An intriguing signature of weakening liquidity with increasing temperature,  T , is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal “melting”. Our analyses carry serious implications for a variety of experiments on many-particle systems − semiconductor heterostructure quantum dots, trapped ions, nanoclusters, colloids and complex plasma.</description><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Dusty plasmas</subject><subject>Fluid- and Aerodynamics</subject><subject>Heterostructures</subject><subject>Melting</subject><subject>Nanoclusters</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum dots</subject><subject>Regular Article</subject><subject>Solid State Physics</subject><issn>1434-6028</issn><issn>1434-6036</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kctKxDAUhosoeH0BVwFXLjomadKmSxl0FARhVFyGtD2pHdpkTFLQtze1Is5Cssjt-04uf5KcE7wghOEr2G6qK6CY5GmOGRMp30uOCMtYnGb5_u-YisPk2PsNxhEl7ChZrW0PyGpUW6M7AwOY4JE1KLwBGqAPnWmn7deuNeDQEOl67MGjzqD3UZkwDqixwZ8mB1r1Hs5--pPk5fbmeXmXPjyu7pfXD2mdlTSkUHAlqlxkoqCsYppDVRHBIaMNKXjTFA1RuuSY61oISmhNRKU0AxxFXiqRnSQXc92ts-8j-CA3dnQmHimJELgoGCUkUouZalUPsjPaBqfq2BoYuvhS0F1cv-ZZ_BySl5NwuSNEJsBHaNXovbx_Wu-ydGZrZ713oOXWdYNyn5JgOaUhpzTkdxryOw3Jo5TNko-wacH9uff_1hcIwo1F</recordid><startdate>20160301</startdate><enddate>20160301</enddate><creator>Bhattacharya, Dyuti</creator><creator>Filinov, Alexei V.</creator><creator>Ghosal, Amit</creator><creator>Bonitz, Michael</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20160301</creationdate><title>Role of confinements on the melting of Wigner molecules in quantum dots</title><author>Bhattacharya, Dyuti ; Filinov, Alexei V. ; Ghosal, Amit ; Bonitz, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-e75a8b6838724b4f5ebb185e32d175dd7d1af9505fc88212c18baf4e0e7559a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Dusty plasmas</topic><topic>Fluid- and Aerodynamics</topic><topic>Heterostructures</topic><topic>Melting</topic><topic>Nanoclusters</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum dots</topic><topic>Regular Article</topic><topic>Solid State Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharya, Dyuti</creatorcontrib><creatorcontrib>Filinov, Alexei V.</creatorcontrib><creatorcontrib>Ghosal, Amit</creatorcontrib><creatorcontrib>Bonitz, Michael</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>The European physical journal. B, Condensed matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharya, Dyuti</au><au>Filinov, Alexei V.</au><au>Ghosal, Amit</au><au>Bonitz, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Role of confinements on the melting of Wigner molecules in quantum dots</atitle><jtitle>The European physical journal. B, Condensed matter physics</jtitle><stitle>Eur. Phys. J. B</stitle><date>2016-03-01</date><risdate>2016</risdate><volume>89</volume><issue>3</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><artnum>60</artnum><issn>1434-6028</issn><eissn>1434-6036</eissn><abstract>We explore the stability of a Wigner molecule (WM) formed in confinements with different geometries emulating the role of disorder and analyze the melting (or crossover) of such a system. Building on a recent calculation [D. Bhattacharya, A. Ghosal, Eur. Phys. J. B  86 , 499 (2013)] that discussed the effects of irregularities on the thermal crossover in classical systems, we expand our studies in the untested territory by including both the effects of quantum fluctuations and of disorder . Our results, using classical and quantum (path integral) Monte Carlo techniques, unfold complementary mechanisms that drive the quantum and thermal crossovers in a WM and show that the symmetry of the confinement plays no significant role in determining the quantum crossover scale  n X . This is because the zero-point motion screens the boundary effects within short distances. The phase diagram as a function of thermal and quantum fluctuations determined from independent criteria is unique, and shows “melting” from the WM to both the classical and quantum “liquids”. An intriguing signature of weakening liquidity with increasing temperature,  T , is found in the extreme quantum regime. The crossover is associated with production of defects. However, these defects appear to play distinct roles in driving the quantum and thermal “melting”. Our analyses carry serious implications for a variety of experiments on many-particle systems − semiconductor heterostructure quantum dots, trapped ions, nanoclusters, colloids and complex plasma.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1140/epjb/e2016-60448-5</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1434-6028
ispartof The European physical journal. B, Condensed matter physics, 2016-03, Vol.89 (3), p.1-12, Article 60
issn 1434-6028
1434-6036
language eng
recordid cdi_proquest_journals_1880774211
source Springer Nature - Complete Springer Journals
subjects Complex Systems
Condensed Matter Physics
Dusty plasmas
Fluid- and Aerodynamics
Heterostructures
Melting
Nanoclusters
Physics
Physics and Astronomy
Quantum dots
Regular Article
Solid State Physics
title Role of confinements on the melting of Wigner molecules in quantum dots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T18%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Role%20of%20confinements%20on%20the%20melting%20of%20Wigner%20molecules%20in%20quantum%20dots&rft.jtitle=The%20European%20physical%20journal.%20B,%20Condensed%20matter%20physics&rft.au=Bhattacharya,%20Dyuti&rft.date=2016-03-01&rft.volume=89&rft.issue=3&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.artnum=60&rft.issn=1434-6028&rft.eissn=1434-6036&rft_id=info:doi/10.1140/epjb/e2016-60448-5&rft_dat=%3Cgale_proqu%3EA530361691%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880774211&rft_id=info:pmid/&rft_galeid=A530361691&rfr_iscdi=true