Group classification of Rapoport–Leas equations
In this work we study the so-called Rapoport–Leas equations using methods of differential invariants and geometric theory of differential equations. Such equations are very important for the problems of non-linear filtration and for the problems of oil extraction. We calculate symmetry algebras for...
Gespeichert in:
Veröffentlicht in: | Lobachevskii journal of mathematics 2017, Vol.38 (1), p.116-124 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 124 |
---|---|
container_issue | 1 |
container_start_page | 116 |
container_title | Lobachevskii journal of mathematics |
container_volume | 38 |
creator | Bibikov, P. |
description | In this work we study the so-called Rapoport–Leas equations using methods of differential invariants and geometric theory of differential equations. Such equations are very important for the problems of non-linear filtration and for the problems of oil extraction. We calculate symmetry algebras for the different classes of Rapoport–Leas equations and describe the algebras of differential invariants for the actions of symmetry algebras on the solutions of Rapoport–Leas equations. |
doi_str_mv | 10.1134/S1995080217010073 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880771947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880771947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3aeaa917ae30ea83b71aaa1466cac2147ed0f60487faa102ef5b956bac74478f3</originalsourceid><addsrcrecordid>eNp1kM1KQzEQhYMoWKsP4O6C66szSZqfpRStQkHwZ32ZxkRuqc1tcu_Cne_gG_okptaFIK5mmO-cM3AYO0U4RxTy4gGtnYABjhoQQIs9NkKDprZW8f2yF1xv-SE7ynkJwLlSasRwluLQVW5FObehddS3cV3FUN1TF7uY-s_3j7mnXPnN8M3yMTsItMr-5GeO2dP11eP0pp7fzW6nl_PaCVR9LcgTWdTkBXgyYqGRiFAq5chxlNo_Q1AgjQ7lDNyHycJO1IKcllKbIMbsbJfbpbgZfO6bZRzSurxs0BjQGq3URYU7lUsx5-RD06X2ldJbg9Bsm2n-NFM8fOfJRbt-8elX8r-mLwDaZX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880771947</pqid></control><display><type>article</type><title>Group classification of Rapoport–Leas equations</title><source>SpringerLink</source><creator>Bibikov, P.</creator><creatorcontrib>Bibikov, P.</creatorcontrib><description>In this work we study the so-called Rapoport–Leas equations using methods of differential invariants and geometric theory of differential equations. Such equations are very important for the problems of non-linear filtration and for the problems of oil extraction. We calculate symmetry algebras for the different classes of Rapoport–Leas equations and describe the algebras of differential invariants for the actions of symmetry algebras on the solutions of Rapoport–Leas equations.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080217010073</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Differential equations ; Geometry ; Invariants ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Symmetry</subject><ispartof>Lobachevskii journal of mathematics, 2017, Vol.38 (1), p.116-124</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3aeaa917ae30ea83b71aaa1466cac2147ed0f60487faa102ef5b956bac74478f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080217010073$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080217010073$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bibikov, P.</creatorcontrib><title>Group classification of Rapoport–Leas equations</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this work we study the so-called Rapoport–Leas equations using methods of differential invariants and geometric theory of differential equations. Such equations are very important for the problems of non-linear filtration and for the problems of oil extraction. We calculate symmetry algebras for the different classes of Rapoport–Leas equations and describe the algebras of differential invariants for the actions of symmetry algebras on the solutions of Rapoport–Leas equations.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Differential equations</subject><subject>Geometry</subject><subject>Invariants</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Symmetry</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KQzEQhYMoWKsP4O6C66szSZqfpRStQkHwZ32ZxkRuqc1tcu_Cne_gG_okptaFIK5mmO-cM3AYO0U4RxTy4gGtnYABjhoQQIs9NkKDprZW8f2yF1xv-SE7ynkJwLlSasRwluLQVW5FObehddS3cV3FUN1TF7uY-s_3j7mnXPnN8M3yMTsItMr-5GeO2dP11eP0pp7fzW6nl_PaCVR9LcgTWdTkBXgyYqGRiFAq5chxlNo_Q1AgjQ7lDNyHycJO1IKcllKbIMbsbJfbpbgZfO6bZRzSurxs0BjQGq3URYU7lUsx5-RD06X2ldJbg9Bsm2n-NFM8fOfJRbt-8elX8r-mLwDaZX8</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Bibikov, P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Group classification of Rapoport–Leas equations</title><author>Bibikov, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3aeaa917ae30ea83b71aaa1466cac2147ed0f60487faa102ef5b956bac74478f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Differential equations</topic><topic>Geometry</topic><topic>Invariants</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bibikov, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bibikov, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group classification of Rapoport–Leas equations</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2017</date><risdate>2017</risdate><volume>38</volume><issue>1</issue><spage>116</spage><epage>124</epage><pages>116-124</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this work we study the so-called Rapoport–Leas equations using methods of differential invariants and geometric theory of differential equations. Such equations are very important for the problems of non-linear filtration and for the problems of oil extraction. We calculate symmetry algebras for the different classes of Rapoport–Leas equations and describe the algebras of differential invariants for the actions of symmetry algebras on the solutions of Rapoport–Leas equations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080217010073</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1995-0802 |
ispartof | Lobachevskii journal of mathematics, 2017, Vol.38 (1), p.116-124 |
issn | 1995-0802 1818-9962 |
language | eng |
recordid | cdi_proquest_journals_1880771947 |
source | SpringerLink |
subjects | Algebra Analysis Differential equations Geometry Invariants Mathematical Logic and Foundations Mathematics Mathematics and Statistics Probability Theory and Stochastic Processes Symmetry |
title | Group classification of Rapoport–Leas equations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20classification%20of%20Rapoport%E2%80%93Leas%20equations&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Bibikov,%20P.&rft.date=2017&rft.volume=38&rft.issue=1&rft.spage=116&rft.epage=124&rft.pages=116-124&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080217010073&rft_dat=%3Cproquest_cross%3E1880771947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880771947&rft_id=info:pmid/&rfr_iscdi=true |