Group classification of Rapoport–Leas equations

In this work we study the so-called Rapoport–Leas equations using methods of differential invariants and geometric theory of differential equations. Such equations are very important for the problems of non-linear filtration and for the problems of oil extraction. We calculate symmetry algebras for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lobachevskii journal of mathematics 2017, Vol.38 (1), p.116-124
1. Verfasser: Bibikov, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 124
container_issue 1
container_start_page 116
container_title Lobachevskii journal of mathematics
container_volume 38
creator Bibikov, P.
description In this work we study the so-called Rapoport–Leas equations using methods of differential invariants and geometric theory of differential equations. Such equations are very important for the problems of non-linear filtration and for the problems of oil extraction. We calculate symmetry algebras for the different classes of Rapoport–Leas equations and describe the algebras of differential invariants for the actions of symmetry algebras on the solutions of Rapoport–Leas equations.
doi_str_mv 10.1134/S1995080217010073
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880771947</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880771947</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3aeaa917ae30ea83b71aaa1466cac2147ed0f60487faa102ef5b956bac74478f3</originalsourceid><addsrcrecordid>eNp1kM1KQzEQhYMoWKsP4O6C66szSZqfpRStQkHwZ32ZxkRuqc1tcu_Cne_gG_okptaFIK5mmO-cM3AYO0U4RxTy4gGtnYABjhoQQIs9NkKDprZW8f2yF1xv-SE7ynkJwLlSasRwluLQVW5FObehddS3cV3FUN1TF7uY-s_3j7mnXPnN8M3yMTsItMr-5GeO2dP11eP0pp7fzW6nl_PaCVR9LcgTWdTkBXgyYqGRiFAq5chxlNo_Q1AgjQ7lDNyHycJO1IKcllKbIMbsbJfbpbgZfO6bZRzSurxs0BjQGq3URYU7lUsx5-RD06X2ldJbg9Bsm2n-NFM8fOfJRbt-8elX8r-mLwDaZX8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880771947</pqid></control><display><type>article</type><title>Group classification of Rapoport–Leas equations</title><source>SpringerLink</source><creator>Bibikov, P.</creator><creatorcontrib>Bibikov, P.</creatorcontrib><description>In this work we study the so-called Rapoport–Leas equations using methods of differential invariants and geometric theory of differential equations. Such equations are very important for the problems of non-linear filtration and for the problems of oil extraction. We calculate symmetry algebras for the different classes of Rapoport–Leas equations and describe the algebras of differential invariants for the actions of symmetry algebras on the solutions of Rapoport–Leas equations.</description><identifier>ISSN: 1995-0802</identifier><identifier>EISSN: 1818-9962</identifier><identifier>DOI: 10.1134/S1995080217010073</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algebra ; Analysis ; Differential equations ; Geometry ; Invariants ; Mathematical Logic and Foundations ; Mathematics ; Mathematics and Statistics ; Probability Theory and Stochastic Processes ; Symmetry</subject><ispartof>Lobachevskii journal of mathematics, 2017, Vol.38 (1), p.116-124</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3aeaa917ae30ea83b71aaa1466cac2147ed0f60487faa102ef5b956bac74478f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1995080217010073$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1995080217010073$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Bibikov, P.</creatorcontrib><title>Group classification of Rapoport–Leas equations</title><title>Lobachevskii journal of mathematics</title><addtitle>Lobachevskii J Math</addtitle><description>In this work we study the so-called Rapoport–Leas equations using methods of differential invariants and geometric theory of differential equations. Such equations are very important for the problems of non-linear filtration and for the problems of oil extraction. We calculate symmetry algebras for the different classes of Rapoport–Leas equations and describe the algebras of differential invariants for the actions of symmetry algebras on the solutions of Rapoport–Leas equations.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Differential equations</subject><subject>Geometry</subject><subject>Invariants</subject><subject>Mathematical Logic and Foundations</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Symmetry</subject><issn>1995-0802</issn><issn>1818-9962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KQzEQhYMoWKsP4O6C66szSZqfpRStQkHwZ32ZxkRuqc1tcu_Cne_gG_okptaFIK5mmO-cM3AYO0U4RxTy4gGtnYABjhoQQIs9NkKDprZW8f2yF1xv-SE7ynkJwLlSasRwluLQVW5FObehddS3cV3FUN1TF7uY-s_3j7mnXPnN8M3yMTsItMr-5GeO2dP11eP0pp7fzW6nl_PaCVR9LcgTWdTkBXgyYqGRiFAq5chxlNo_Q1AgjQ7lDNyHycJO1IKcllKbIMbsbJfbpbgZfO6bZRzSurxs0BjQGq3URYU7lUsx5-RD06X2ldJbg9Bsm2n-NFM8fOfJRbt-8elX8r-mLwDaZX8</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Bibikov, P.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Group classification of Rapoport–Leas equations</title><author>Bibikov, P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3aeaa917ae30ea83b71aaa1466cac2147ed0f60487faa102ef5b956bac74478f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Differential equations</topic><topic>Geometry</topic><topic>Invariants</topic><topic>Mathematical Logic and Foundations</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bibikov, P.</creatorcontrib><collection>CrossRef</collection><jtitle>Lobachevskii journal of mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bibikov, P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Group classification of Rapoport–Leas equations</atitle><jtitle>Lobachevskii journal of mathematics</jtitle><stitle>Lobachevskii J Math</stitle><date>2017</date><risdate>2017</risdate><volume>38</volume><issue>1</issue><spage>116</spage><epage>124</epage><pages>116-124</pages><issn>1995-0802</issn><eissn>1818-9962</eissn><abstract>In this work we study the so-called Rapoport–Leas equations using methods of differential invariants and geometric theory of differential equations. Such equations are very important for the problems of non-linear filtration and for the problems of oil extraction. We calculate symmetry algebras for the different classes of Rapoport–Leas equations and describe the algebras of differential invariants for the actions of symmetry algebras on the solutions of Rapoport–Leas equations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1995080217010073</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1995-0802
ispartof Lobachevskii journal of mathematics, 2017, Vol.38 (1), p.116-124
issn 1995-0802
1818-9962
language eng
recordid cdi_proquest_journals_1880771947
source SpringerLink
subjects Algebra
Analysis
Differential equations
Geometry
Invariants
Mathematical Logic and Foundations
Mathematics
Mathematics and Statistics
Probability Theory and Stochastic Processes
Symmetry
title Group classification of Rapoport–Leas equations
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Group%20classification%20of%20Rapoport%E2%80%93Leas%20equations&rft.jtitle=Lobachevskii%20journal%20of%20mathematics&rft.au=Bibikov,%20P.&rft.date=2017&rft.volume=38&rft.issue=1&rft.spage=116&rft.epage=124&rft.pages=116-124&rft.issn=1995-0802&rft.eissn=1818-9962&rft_id=info:doi/10.1134/S1995080217010073&rft_dat=%3Cproquest_cross%3E1880771947%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880771947&rft_id=info:pmid/&rfr_iscdi=true