Characterisation of a grooved heat pipe with an anodised surface

A grooved heat pipe (GHP) is an important device for managing heat in space applications such as satellites and space stations, as it works efficiently in the absence of gravity. Apart from the above application, axial GHPs are used in many applications, such as electronic cooling units for temperat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Heat and mass transfer 2017-03, Vol.53 (3), p.753-763
Hauptverfasser: Solomon, A. Brusly, Ram Kumar, A. M., Ramachandran, K., Pillai, B. C., Senthil Kumar, C., Sharifpur, Mohsen, Meyer, Josua P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 763
container_issue 3
container_start_page 753
container_title Heat and mass transfer
container_volume 53
creator Solomon, A. Brusly
Ram Kumar, A. M.
Ramachandran, K.
Pillai, B. C.
Senthil Kumar, C.
Sharifpur, Mohsen
Meyer, Josua P.
description A grooved heat pipe (GHP) is an important device for managing heat in space applications such as satellites and space stations, as it works efficiently in the absence of gravity. Apart from the above application, axial GHPs are used in many applications, such as electronic cooling units for temperature control and permafrost cooling. Improving the performance of GHPs is essential for better cooling and thermal management. In the present study, the effect of anodization on the heat transfer characteristics of a GHP is studied with R600a as a working fluid. In addition, the effects of fill ratio, inclination angle and heat inputs on the heat transfer performance of a GHP are studied. Furthermore, the effect of heat flux on dimensional numbers, such as the Webber, Bond, Kutateladze and condensation numbers, are studied. The inclination angle, heat input and fill ratio of GHPs are varied in the range of 0°–90°, 25–250 W and 10–70 % respectively. It is found that the above parameters have a significant effect on the performance of a GHP. Due to the anodisation, the maximum enhancement in heat transfer coefficient at the evaporator is 39 % for a 90° inclination at a heat flux of 11 kW/m 2 . The reported performance enhancement of a GHP may be due to the large numbers of nucleation sites created by the anodisation process and enhancement in the capillary force due to the coating.
doi_str_mv 10.1007/s00231-016-1856-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880771333</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880771333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-b492902c1424d13cc59b0d9628fc60d96031aaba4bb88985f99a7560961fcfcc3</originalsourceid><addsrcrecordid>eNp1kEFLxDAQhYMouK7-AG8Bz9FMkqbJTVl0FRa86DmkabLbRZuatIr_3iz14MVhYAbmvTfwIXQJ9BoorW8ypYwDoSAJqEoSdYQWIDgjAAqO0YJqUZNaAJyis5z3RS0F4wt0u9rZZN3oU5ft2MUex4At3qYYP32Ld96OeOgGj7-6cYdtXzq2XS6nPKVgnT9HJ8G-ZX_xO5fo9eH-ZfVINs_rp9Xdhjhe6ZE0QjNNmQPBRAvcuUo3tNWSqeDkYaEcrG2saBqltKqC1rauJNUSggvO8SW6mnOHFD8mn0ezj1Pqy0sDStG6Bl5qiWBWuRRzTj6YIXXvNn0boOYAysygTAFlDqCMKh42e3LR9luf_iT_a_oBNXxp7A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880771333</pqid></control><display><type>article</type><title>Characterisation of a grooved heat pipe with an anodised surface</title><source>SpringerLink Journals - AutoHoldings</source><creator>Solomon, A. Brusly ; Ram Kumar, A. M. ; Ramachandran, K. ; Pillai, B. C. ; Senthil Kumar, C. ; Sharifpur, Mohsen ; Meyer, Josua P.</creator><creatorcontrib>Solomon, A. Brusly ; Ram Kumar, A. M. ; Ramachandran, K. ; Pillai, B. C. ; Senthil Kumar, C. ; Sharifpur, Mohsen ; Meyer, Josua P.</creatorcontrib><description>A grooved heat pipe (GHP) is an important device for managing heat in space applications such as satellites and space stations, as it works efficiently in the absence of gravity. Apart from the above application, axial GHPs are used in many applications, such as electronic cooling units for temperature control and permafrost cooling. Improving the performance of GHPs is essential for better cooling and thermal management. In the present study, the effect of anodization on the heat transfer characteristics of a GHP is studied with R600a as a working fluid. In addition, the effects of fill ratio, inclination angle and heat inputs on the heat transfer performance of a GHP are studied. Furthermore, the effect of heat flux on dimensional numbers, such as the Webber, Bond, Kutateladze and condensation numbers, are studied. The inclination angle, heat input and fill ratio of GHPs are varied in the range of 0°–90°, 25–250 W and 10–70 % respectively. It is found that the above parameters have a significant effect on the performance of a GHP. Due to the anodisation, the maximum enhancement in heat transfer coefficient at the evaporator is 39 % for a 90° inclination at a heat flux of 11 kW/m 2 . The reported performance enhancement of a GHP may be due to the large numbers of nucleation sites created by the anodisation process and enhancement in the capillary force due to the coating.</description><identifier>ISSN: 0947-7411</identifier><identifier>EISSN: 1432-1181</identifier><identifier>DOI: 10.1007/s00231-016-1856-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Engineering ; Engineering Thermodynamics ; Heat and Mass Transfer ; Industrial Chemistry/Chemical Engineering ; Original ; Thermal management ; Thermodynamics</subject><ispartof>Heat and mass transfer, 2017-03, Vol.53 (3), p.753-763</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-b492902c1424d13cc59b0d9628fc60d96031aaba4bb88985f99a7560961fcfcc3</citedby><cites>FETCH-LOGICAL-c359t-b492902c1424d13cc59b0d9628fc60d96031aaba4bb88985f99a7560961fcfcc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00231-016-1856-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00231-016-1856-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Solomon, A. Brusly</creatorcontrib><creatorcontrib>Ram Kumar, A. M.</creatorcontrib><creatorcontrib>Ramachandran, K.</creatorcontrib><creatorcontrib>Pillai, B. C.</creatorcontrib><creatorcontrib>Senthil Kumar, C.</creatorcontrib><creatorcontrib>Sharifpur, Mohsen</creatorcontrib><creatorcontrib>Meyer, Josua P.</creatorcontrib><title>Characterisation of a grooved heat pipe with an anodised surface</title><title>Heat and mass transfer</title><addtitle>Heat Mass Transfer</addtitle><description>A grooved heat pipe (GHP) is an important device for managing heat in space applications such as satellites and space stations, as it works efficiently in the absence of gravity. Apart from the above application, axial GHPs are used in many applications, such as electronic cooling units for temperature control and permafrost cooling. Improving the performance of GHPs is essential for better cooling and thermal management. In the present study, the effect of anodization on the heat transfer characteristics of a GHP is studied with R600a as a working fluid. In addition, the effects of fill ratio, inclination angle and heat inputs on the heat transfer performance of a GHP are studied. Furthermore, the effect of heat flux on dimensional numbers, such as the Webber, Bond, Kutateladze and condensation numbers, are studied. The inclination angle, heat input and fill ratio of GHPs are varied in the range of 0°–90°, 25–250 W and 10–70 % respectively. It is found that the above parameters have a significant effect on the performance of a GHP. Due to the anodisation, the maximum enhancement in heat transfer coefficient at the evaporator is 39 % for a 90° inclination at a heat flux of 11 kW/m 2 . The reported performance enhancement of a GHP may be due to the large numbers of nucleation sites created by the anodisation process and enhancement in the capillary force due to the coating.</description><subject>Engineering</subject><subject>Engineering Thermodynamics</subject><subject>Heat and Mass Transfer</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Original</subject><subject>Thermal management</subject><subject>Thermodynamics</subject><issn>0947-7411</issn><issn>1432-1181</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kEFLxDAQhYMouK7-AG8Bz9FMkqbJTVl0FRa86DmkabLbRZuatIr_3iz14MVhYAbmvTfwIXQJ9BoorW8ypYwDoSAJqEoSdYQWIDgjAAqO0YJqUZNaAJyis5z3RS0F4wt0u9rZZN3oU5ft2MUex4At3qYYP32Ld96OeOgGj7-6cYdtXzq2XS6nPKVgnT9HJ8G-ZX_xO5fo9eH-ZfVINs_rp9Xdhjhe6ZE0QjNNmQPBRAvcuUo3tNWSqeDkYaEcrG2saBqltKqC1rauJNUSggvO8SW6mnOHFD8mn0ezj1Pqy0sDStG6Bl5qiWBWuRRzTj6YIXXvNn0boOYAysygTAFlDqCMKh42e3LR9luf_iT_a_oBNXxp7A</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Solomon, A. Brusly</creator><creator>Ram Kumar, A. M.</creator><creator>Ramachandran, K.</creator><creator>Pillai, B. C.</creator><creator>Senthil Kumar, C.</creator><creator>Sharifpur, Mohsen</creator><creator>Meyer, Josua P.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Characterisation of a grooved heat pipe with an anodised surface</title><author>Solomon, A. Brusly ; Ram Kumar, A. M. ; Ramachandran, K. ; Pillai, B. C. ; Senthil Kumar, C. ; Sharifpur, Mohsen ; Meyer, Josua P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-b492902c1424d13cc59b0d9628fc60d96031aaba4bb88985f99a7560961fcfcc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Engineering</topic><topic>Engineering Thermodynamics</topic><topic>Heat and Mass Transfer</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Original</topic><topic>Thermal management</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Solomon, A. Brusly</creatorcontrib><creatorcontrib>Ram Kumar, A. M.</creatorcontrib><creatorcontrib>Ramachandran, K.</creatorcontrib><creatorcontrib>Pillai, B. C.</creatorcontrib><creatorcontrib>Senthil Kumar, C.</creatorcontrib><creatorcontrib>Sharifpur, Mohsen</creatorcontrib><creatorcontrib>Meyer, Josua P.</creatorcontrib><collection>CrossRef</collection><jtitle>Heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Solomon, A. Brusly</au><au>Ram Kumar, A. M.</au><au>Ramachandran, K.</au><au>Pillai, B. C.</au><au>Senthil Kumar, C.</au><au>Sharifpur, Mohsen</au><au>Meyer, Josua P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterisation of a grooved heat pipe with an anodised surface</atitle><jtitle>Heat and mass transfer</jtitle><stitle>Heat Mass Transfer</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>53</volume><issue>3</issue><spage>753</spage><epage>763</epage><pages>753-763</pages><issn>0947-7411</issn><eissn>1432-1181</eissn><abstract>A grooved heat pipe (GHP) is an important device for managing heat in space applications such as satellites and space stations, as it works efficiently in the absence of gravity. Apart from the above application, axial GHPs are used in many applications, such as electronic cooling units for temperature control and permafrost cooling. Improving the performance of GHPs is essential for better cooling and thermal management. In the present study, the effect of anodization on the heat transfer characteristics of a GHP is studied with R600a as a working fluid. In addition, the effects of fill ratio, inclination angle and heat inputs on the heat transfer performance of a GHP are studied. Furthermore, the effect of heat flux on dimensional numbers, such as the Webber, Bond, Kutateladze and condensation numbers, are studied. The inclination angle, heat input and fill ratio of GHPs are varied in the range of 0°–90°, 25–250 W and 10–70 % respectively. It is found that the above parameters have a significant effect on the performance of a GHP. Due to the anodisation, the maximum enhancement in heat transfer coefficient at the evaporator is 39 % for a 90° inclination at a heat flux of 11 kW/m 2 . The reported performance enhancement of a GHP may be due to the large numbers of nucleation sites created by the anodisation process and enhancement in the capillary force due to the coating.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00231-016-1856-8</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0947-7411
ispartof Heat and mass transfer, 2017-03, Vol.53 (3), p.753-763
issn 0947-7411
1432-1181
language eng
recordid cdi_proquest_journals_1880771333
source SpringerLink Journals - AutoHoldings
subjects Engineering
Engineering Thermodynamics
Heat and Mass Transfer
Industrial Chemistry/Chemical Engineering
Original
Thermal management
Thermodynamics
title Characterisation of a grooved heat pipe with an anodised surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T09%3A16%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterisation%20of%20a%20grooved%20heat%20pipe%20with%20an%20anodised%20surface&rft.jtitle=Heat%20and%20mass%20transfer&rft.au=Solomon,%20A.%20Brusly&rft.date=2017-03-01&rft.volume=53&rft.issue=3&rft.spage=753&rft.epage=763&rft.pages=753-763&rft.issn=0947-7411&rft.eissn=1432-1181&rft_id=info:doi/10.1007/s00231-016-1856-8&rft_dat=%3Cproquest_cross%3E1880771333%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880771333&rft_id=info:pmid/&rfr_iscdi=true