Flow structure due to hexagonal cavities and bumps on a plate surface

We present the results of flow visualization and velocity measurements on a hexagonal structured surface. Several configurations with concave and convex hexagonal structures are investigated. Each hexagonal structure is 2.7 mm deep and 33 mm wide (width between flats) and has a height to diameter ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermophysics and aeromechanics 2016-11, Vol.23 (6), p.839-847
Hauptverfasser: Butt, U., Egbers, C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 847
container_issue 6
container_start_page 839
container_title Thermophysics and aeromechanics
container_volume 23
creator Butt, U.
Egbers, C.
description We present the results of flow visualization and velocity measurements on a hexagonal structured surface. Several configurations with concave and convex hexagonal structures are investigated. Each hexagonal structure is 2.7 mm deep and 33 mm wide (width between flats) and has a height to diameter ratio of 0.05 based on equivalent diameter. Considered are flow velocities 19 m/s, 24 m/s, and 27 m/s. The flow bifurcates on the leading edge of the concave configuration into two counter rotating vortices and propagates further in streamwise direction. The circulating regions are identified by the peaks in r.m.s. velocity curves. In case of concave configuration, the flow splits up into counter rotating vortical structures in a vertical plane parallel to the flow. The lower vortex rotating in the opposite direction of the flow cause the oil film fringes to drift upstream. Complex circulating regions similar to the arrangement of slices in an orange can be observed on the trailing edge of the concave hexagonal structure.
doi_str_mv 10.1134/S0869864316060068
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880767970</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880767970</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-f00ce434df4e093de82df19b4d964785e779238e391954aac48ebc3c36fe36103</originalsourceid><addsrcrecordid>eNp1kM1LAzEQxYMoWGr_AG8Bz6uTTZpNjlJaFQoe1POSZie1ZbtZ8-HHf-8u9SCIcxmY93uP4RFyyeCaMS5unkBJraTgTIIEkOqETNics2I461MyGeVi1M_JLMY9DMOZKDlMyHLV-g8aU8g25YC0yUiTp6_4aba-My215n2Xdhip6Rq6yYc-Ut9RQ_vWJKQxB2csXpAzZ9qIs589JS-r5fPivlg_3j0sbteFLaVKhQOwKLhonEDQvEFVNo7pjWi0FJWaY1Xpkivkmum5MMYKhRvLLZcOuWTAp-TqmNsH_5YxpnrvcxjejDVTCipZ6Wqk2JGywccY0NV92B1M-KoZ1GNh9Z_CBk959MSB7bYYfiX_a_oGyTBreg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880767970</pqid></control><display><type>article</type><title>Flow structure due to hexagonal cavities and bumps on a plate surface</title><source>SpringerLink Journals - AutoHoldings</source><creator>Butt, U. ; Egbers, C.</creator><creatorcontrib>Butt, U. ; Egbers, C.</creatorcontrib><description>We present the results of flow visualization and velocity measurements on a hexagonal structured surface. Several configurations with concave and convex hexagonal structures are investigated. Each hexagonal structure is 2.7 mm deep and 33 mm wide (width between flats) and has a height to diameter ratio of 0.05 based on equivalent diameter. Considered are flow velocities 19 m/s, 24 m/s, and 27 m/s. The flow bifurcates on the leading edge of the concave configuration into two counter rotating vortices and propagates further in streamwise direction. The circulating regions are identified by the peaks in r.m.s. velocity curves. In case of concave configuration, the flow splits up into counter rotating vortical structures in a vertical plane parallel to the flow. The lower vortex rotating in the opposite direction of the flow cause the oil film fringes to drift upstream. Complex circulating regions similar to the arrangement of slices in an orange can be observed on the trailing edge of the concave hexagonal structure.</description><identifier>ISSN: 0869-8643</identifier><identifier>EISSN: 1531-8699</identifier><identifier>DOI: 10.1134/S0869864316060068</identifier><language>eng</language><publisher>Novosibirsk: Kutateladze Institute of Thermophysics SB RAS</publisher><subject>Configurations ; Diameters ; Flow velocity ; Flow visualization ; Fluid flow ; Physics ; Physics and Astronomy ; Rotation ; Thermodynamics</subject><ispartof>Thermophysics and aeromechanics, 2016-11, Vol.23 (6), p.839-847</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Copyright Springer Science &amp; Business Media 2016</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-f00ce434df4e093de82df19b4d964785e779238e391954aac48ebc3c36fe36103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0869864316060068$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0869864316060068$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Butt, U.</creatorcontrib><creatorcontrib>Egbers, C.</creatorcontrib><title>Flow structure due to hexagonal cavities and bumps on a plate surface</title><title>Thermophysics and aeromechanics</title><addtitle>Thermophys. Aeromech</addtitle><description>We present the results of flow visualization and velocity measurements on a hexagonal structured surface. Several configurations with concave and convex hexagonal structures are investigated. Each hexagonal structure is 2.7 mm deep and 33 mm wide (width between flats) and has a height to diameter ratio of 0.05 based on equivalent diameter. Considered are flow velocities 19 m/s, 24 m/s, and 27 m/s. The flow bifurcates on the leading edge of the concave configuration into two counter rotating vortices and propagates further in streamwise direction. The circulating regions are identified by the peaks in r.m.s. velocity curves. In case of concave configuration, the flow splits up into counter rotating vortical structures in a vertical plane parallel to the flow. The lower vortex rotating in the opposite direction of the flow cause the oil film fringes to drift upstream. Complex circulating regions similar to the arrangement of slices in an orange can be observed on the trailing edge of the concave hexagonal structure.</description><subject>Configurations</subject><subject>Diameters</subject><subject>Flow velocity</subject><subject>Flow visualization</subject><subject>Fluid flow</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rotation</subject><subject>Thermodynamics</subject><issn>0869-8643</issn><issn>1531-8699</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNp1kM1LAzEQxYMoWGr_AG8Bz6uTTZpNjlJaFQoe1POSZie1ZbtZ8-HHf-8u9SCIcxmY93uP4RFyyeCaMS5unkBJraTgTIIEkOqETNics2I461MyGeVi1M_JLMY9DMOZKDlMyHLV-g8aU8g25YC0yUiTp6_4aba-My215n2Xdhip6Rq6yYc-Ut9RQ_vWJKQxB2csXpAzZ9qIs589JS-r5fPivlg_3j0sbteFLaVKhQOwKLhonEDQvEFVNo7pjWi0FJWaY1Xpkivkmum5MMYKhRvLLZcOuWTAp-TqmNsH_5YxpnrvcxjejDVTCipZ6Wqk2JGywccY0NV92B1M-KoZ1GNh9Z_CBk959MSB7bYYfiX_a_oGyTBreg</recordid><startdate>20161101</startdate><enddate>20161101</enddate><creator>Butt, U.</creator><creator>Egbers, C.</creator><general>Kutateladze Institute of Thermophysics SB RAS</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20161101</creationdate><title>Flow structure due to hexagonal cavities and bumps on a plate surface</title><author>Butt, U. ; Egbers, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-f00ce434df4e093de82df19b4d964785e779238e391954aac48ebc3c36fe36103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Configurations</topic><topic>Diameters</topic><topic>Flow velocity</topic><topic>Flow visualization</topic><topic>Fluid flow</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rotation</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Butt, U.</creatorcontrib><creatorcontrib>Egbers, C.</creatorcontrib><collection>CrossRef</collection><jtitle>Thermophysics and aeromechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Butt, U.</au><au>Egbers, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow structure due to hexagonal cavities and bumps on a plate surface</atitle><jtitle>Thermophysics and aeromechanics</jtitle><stitle>Thermophys. Aeromech</stitle><date>2016-11-01</date><risdate>2016</risdate><volume>23</volume><issue>6</issue><spage>839</spage><epage>847</epage><pages>839-847</pages><issn>0869-8643</issn><eissn>1531-8699</eissn><abstract>We present the results of flow visualization and velocity measurements on a hexagonal structured surface. Several configurations with concave and convex hexagonal structures are investigated. Each hexagonal structure is 2.7 mm deep and 33 mm wide (width between flats) and has a height to diameter ratio of 0.05 based on equivalent diameter. Considered are flow velocities 19 m/s, 24 m/s, and 27 m/s. The flow bifurcates on the leading edge of the concave configuration into two counter rotating vortices and propagates further in streamwise direction. The circulating regions are identified by the peaks in r.m.s. velocity curves. In case of concave configuration, the flow splits up into counter rotating vortical structures in a vertical plane parallel to the flow. The lower vortex rotating in the opposite direction of the flow cause the oil film fringes to drift upstream. Complex circulating regions similar to the arrangement of slices in an orange can be observed on the trailing edge of the concave hexagonal structure.</abstract><cop>Novosibirsk</cop><pub>Kutateladze Institute of Thermophysics SB RAS</pub><doi>10.1134/S0869864316060068</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0869-8643
ispartof Thermophysics and aeromechanics, 2016-11, Vol.23 (6), p.839-847
issn 0869-8643
1531-8699
language eng
recordid cdi_proquest_journals_1880767970
source SpringerLink Journals - AutoHoldings
subjects Configurations
Diameters
Flow velocity
Flow visualization
Fluid flow
Physics
Physics and Astronomy
Rotation
Thermodynamics
title Flow structure due to hexagonal cavities and bumps on a plate surface
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T00%3A11%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20structure%20due%20to%20hexagonal%20cavities%20and%20bumps%20on%20a%20plate%20surface&rft.jtitle=Thermophysics%20and%20aeromechanics&rft.au=Butt,%20U.&rft.date=2016-11-01&rft.volume=23&rft.issue=6&rft.spage=839&rft.epage=847&rft.pages=839-847&rft.issn=0869-8643&rft.eissn=1531-8699&rft_id=info:doi/10.1134/S0869864316060068&rft_dat=%3Cproquest_cross%3E1880767970%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880767970&rft_id=info:pmid/&rfr_iscdi=true