Finite spaces: a reduction algorithm for the computation of the small inductive dimension

In this paper we study the small inductive dimension ind for a finite T 0 -space. Particularly, new characterizations of ind are presented. The above study establishes a reduction algorithm for the computation of the dimension ind in the class of all finite T 0 -spaces. The algorithm is based on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational & applied mathematics 2017-03, Vol.36 (1), p.791-803
Hauptverfasser: Georgiou, D. N., Megaritis, A. C., Moshokoa, S. P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 803
container_issue 1
container_start_page 791
container_title Computational & applied mathematics
container_volume 36
creator Georgiou, D. N.
Megaritis, A. C.
Moshokoa, S. P.
description In this paper we study the small inductive dimension ind for a finite T 0 -space. Particularly, new characterizations of ind are presented. The above study establishes a reduction algorithm for the computation of the dimension ind in the class of all finite T 0 -spaces. The algorithm is based on the concept of the incidence matrix of a finite space.
doi_str_mv 10.1007/s40314-015-0261-0
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880767870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880767870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-40fc8e9eb13a6340006c43a13486a4fc1e1ecc03397c6f18292e98dfb5350cc3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EElXpD2CzxGy4ixPHYUMVBaRKLF2YLNe121RJHOwEiX-P2zCwcMtJd--9O32E3CLcI0D5EHPgmDPAgkEmkMEFmaGEkgGH7JLMAAGZzKC4JosYj5AqB8BMzMjHqu7qwdLYa2PjI9U02N1ohtp3VDd7H-rh0FLnAx0Olhrf9uOgz1vvzqPY6qahdXc2fVm6q1vbxSS4IVdON9EufvucbFbPm-UrW7-_vC2f1sxwFAPLwRlpK7tFrgVPb4EwOdfIcyl07gxatMYA51VphEOZVZmt5M5tC16AMXxO7qbYPvjP0cZBHf0YunRRoUwMRClLSCqcVCb4GIN1qg91q8O3QlAnhmpiqBJDdWKoTp5s8sSk7fY2_En-1_QD50Fzvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880767870</pqid></control><display><type>article</type><title>Finite spaces: a reduction algorithm for the computation of the small inductive dimension</title><source>SpringerLink (Online service)</source><creator>Georgiou, D. N. ; Megaritis, A. C. ; Moshokoa, S. P.</creator><creatorcontrib>Georgiou, D. N. ; Megaritis, A. C. ; Moshokoa, S. P.</creatorcontrib><description>In this paper we study the small inductive dimension ind for a finite T 0 -space. Particularly, new characterizations of ind are presented. The above study establishes a reduction algorithm for the computation of the dimension ind in the class of all finite T 0 -spaces. The algorithm is based on the concept of the incidence matrix of a finite space.</description><identifier>ISSN: 0101-8205</identifier><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-015-0261-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Computation ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Reduction</subject><ispartof>Computational &amp; applied mathematics, 2017-03, Vol.36 (1), p.791-803</ispartof><rights>European Union 2015</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-40fc8e9eb13a6340006c43a13486a4fc1e1ecc03397c6f18292e98dfb5350cc3</citedby><cites>FETCH-LOGICAL-c316t-40fc8e9eb13a6340006c43a13486a4fc1e1ecc03397c6f18292e98dfb5350cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-015-0261-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-015-0261-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Georgiou, D. N.</creatorcontrib><creatorcontrib>Megaritis, A. C.</creatorcontrib><creatorcontrib>Moshokoa, S. P.</creatorcontrib><title>Finite spaces: a reduction algorithm for the computation of the small inductive dimension</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper we study the small inductive dimension ind for a finite T 0 -space. Particularly, new characterizations of ind are presented. The above study establishes a reduction algorithm for the computation of the dimension ind in the class of all finite T 0 -spaces. The algorithm is based on the concept of the incidence matrix of a finite space.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computation</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Reduction</subject><issn>0101-8205</issn><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EElXpD2CzxGy4ixPHYUMVBaRKLF2YLNe121RJHOwEiX-P2zCwcMtJd--9O32E3CLcI0D5EHPgmDPAgkEmkMEFmaGEkgGH7JLMAAGZzKC4JosYj5AqB8BMzMjHqu7qwdLYa2PjI9U02N1ohtp3VDd7H-rh0FLnAx0Olhrf9uOgz1vvzqPY6qahdXc2fVm6q1vbxSS4IVdON9EufvucbFbPm-UrW7-_vC2f1sxwFAPLwRlpK7tFrgVPb4EwOdfIcyl07gxatMYA51VphEOZVZmt5M5tC16AMXxO7qbYPvjP0cZBHf0YunRRoUwMRClLSCqcVCb4GIN1qg91q8O3QlAnhmpiqBJDdWKoTp5s8sSk7fY2_En-1_QD50Fzvw</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Georgiou, D. N.</creator><creator>Megaritis, A. C.</creator><creator>Moshokoa, S. P.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Finite spaces: a reduction algorithm for the computation of the small inductive dimension</title><author>Georgiou, D. N. ; Megaritis, A. C. ; Moshokoa, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-40fc8e9eb13a6340006c43a13486a4fc1e1ecc03397c6f18292e98dfb5350cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computation</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgiou, D. N.</creatorcontrib><creatorcontrib>Megaritis, A. C.</creatorcontrib><creatorcontrib>Moshokoa, S. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgiou, D. N.</au><au>Megaritis, A. C.</au><au>Moshokoa, S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite spaces: a reduction algorithm for the computation of the small inductive dimension</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>36</volume><issue>1</issue><spage>791</spage><epage>803</epage><pages>791-803</pages><issn>0101-8205</issn><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper we study the small inductive dimension ind for a finite T 0 -space. Particularly, new characterizations of ind are presented. The above study establishes a reduction algorithm for the computation of the dimension ind in the class of all finite T 0 -spaces. The algorithm is based on the concept of the incidence matrix of a finite space.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-015-0261-0</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0101-8205
ispartof Computational & applied mathematics, 2017-03, Vol.36 (1), p.791-803
issn 0101-8205
2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_1880767870
source SpringerLink (Online service)
subjects Algorithms
Applications of Mathematics
Applied physics
Computation
Computational mathematics
Computational Mathematics and Numerical Analysis
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematics
Mathematics and Statistics
Reduction
title Finite spaces: a reduction algorithm for the computation of the small inductive dimension
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20spaces:%20a%20reduction%20algorithm%20for%20the%20computation%20of%20the%20small%20inductive%20dimension&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Georgiou,%20D.%20N.&rft.date=2017-03-01&rft.volume=36&rft.issue=1&rft.spage=791&rft.epage=803&rft.pages=791-803&rft.issn=0101-8205&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-015-0261-0&rft_dat=%3Cproquest_cross%3E1880767870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880767870&rft_id=info:pmid/&rfr_iscdi=true