Finite spaces: a reduction algorithm for the computation of the small inductive dimension
In this paper we study the small inductive dimension ind for a finite T 0 -space. Particularly, new characterizations of ind are presented. The above study establishes a reduction algorithm for the computation of the dimension ind in the class of all finite T 0 -spaces. The algorithm is based on the...
Gespeichert in:
Veröffentlicht in: | Computational & applied mathematics 2017-03, Vol.36 (1), p.791-803 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 803 |
---|---|
container_issue | 1 |
container_start_page | 791 |
container_title | Computational & applied mathematics |
container_volume | 36 |
creator | Georgiou, D. N. Megaritis, A. C. Moshokoa, S. P. |
description | In this paper we study the small inductive dimension ind for a finite
T
0
-space. Particularly, new characterizations of ind are presented. The above study establishes a reduction algorithm for the computation of the dimension ind in the class of all finite
T
0
-spaces. The algorithm is based on the concept of the incidence matrix of a finite space. |
doi_str_mv | 10.1007/s40314-015-0261-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880767870</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880767870</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-40fc8e9eb13a6340006c43a13486a4fc1e1ecc03397c6f18292e98dfb5350cc3</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EElXpD2CzxGy4ixPHYUMVBaRKLF2YLNe121RJHOwEiX-P2zCwcMtJd--9O32E3CLcI0D5EHPgmDPAgkEmkMEFmaGEkgGH7JLMAAGZzKC4JosYj5AqB8BMzMjHqu7qwdLYa2PjI9U02N1ohtp3VDd7H-rh0FLnAx0Olhrf9uOgz1vvzqPY6qahdXc2fVm6q1vbxSS4IVdON9EufvucbFbPm-UrW7-_vC2f1sxwFAPLwRlpK7tFrgVPb4EwOdfIcyl07gxatMYA51VphEOZVZmt5M5tC16AMXxO7qbYPvjP0cZBHf0YunRRoUwMRClLSCqcVCb4GIN1qg91q8O3QlAnhmpiqBJDdWKoTp5s8sSk7fY2_En-1_QD50Fzvw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880767870</pqid></control><display><type>article</type><title>Finite spaces: a reduction algorithm for the computation of the small inductive dimension</title><source>SpringerLink (Online service)</source><creator>Georgiou, D. N. ; Megaritis, A. C. ; Moshokoa, S. P.</creator><creatorcontrib>Georgiou, D. N. ; Megaritis, A. C. ; Moshokoa, S. P.</creatorcontrib><description>In this paper we study the small inductive dimension ind for a finite
T
0
-space. Particularly, new characterizations of ind are presented. The above study establishes a reduction algorithm for the computation of the dimension ind in the class of all finite
T
0
-spaces. The algorithm is based on the concept of the incidence matrix of a finite space.</description><identifier>ISSN: 0101-8205</identifier><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-015-0261-0</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Algorithms ; Applications of Mathematics ; Applied physics ; Computation ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematics ; Mathematics and Statistics ; Reduction</subject><ispartof>Computational & applied mathematics, 2017-03, Vol.36 (1), p.791-803</ispartof><rights>European Union 2015</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-40fc8e9eb13a6340006c43a13486a4fc1e1ecc03397c6f18292e98dfb5350cc3</citedby><cites>FETCH-LOGICAL-c316t-40fc8e9eb13a6340006c43a13486a4fc1e1ecc03397c6f18292e98dfb5350cc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40314-015-0261-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40314-015-0261-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Georgiou, D. N.</creatorcontrib><creatorcontrib>Megaritis, A. C.</creatorcontrib><creatorcontrib>Moshokoa, S. P.</creatorcontrib><title>Finite spaces: a reduction algorithm for the computation of the small inductive dimension</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In this paper we study the small inductive dimension ind for a finite
T
0
-space. Particularly, new characterizations of ind are presented. The above study establishes a reduction algorithm for the computation of the dimension ind in the class of all finite
T
0
-spaces. The algorithm is based on the concept of the incidence matrix of a finite space.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computation</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Reduction</subject><issn>0101-8205</issn><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EElXpD2CzxGy4ixPHYUMVBaRKLF2YLNe121RJHOwEiX-P2zCwcMtJd--9O32E3CLcI0D5EHPgmDPAgkEmkMEFmaGEkgGH7JLMAAGZzKC4JosYj5AqB8BMzMjHqu7qwdLYa2PjI9U02N1ohtp3VDd7H-rh0FLnAx0Olhrf9uOgz1vvzqPY6qahdXc2fVm6q1vbxSS4IVdON9EufvucbFbPm-UrW7-_vC2f1sxwFAPLwRlpK7tFrgVPb4EwOdfIcyl07gxatMYA51VphEOZVZmt5M5tC16AMXxO7qbYPvjP0cZBHf0YunRRoUwMRClLSCqcVCb4GIN1qg91q8O3QlAnhmpiqBJDdWKoTp5s8sSk7fY2_En-1_QD50Fzvw</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Georgiou, D. N.</creator><creator>Megaritis, A. C.</creator><creator>Moshokoa, S. P.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170301</creationdate><title>Finite spaces: a reduction algorithm for the computation of the small inductive dimension</title><author>Georgiou, D. N. ; Megaritis, A. C. ; Moshokoa, S. P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-40fc8e9eb13a6340006c43a13486a4fc1e1ecc03397c6f18292e98dfb5350cc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computation</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Georgiou, D. N.</creatorcontrib><creatorcontrib>Megaritis, A. C.</creatorcontrib><creatorcontrib>Moshokoa, S. P.</creatorcontrib><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Georgiou, D. N.</au><au>Megaritis, A. C.</au><au>Moshokoa, S. P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finite spaces: a reduction algorithm for the computation of the small inductive dimension</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>36</volume><issue>1</issue><spage>791</spage><epage>803</epage><pages>791-803</pages><issn>0101-8205</issn><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In this paper we study the small inductive dimension ind for a finite
T
0
-space. Particularly, new characterizations of ind are presented. The above study establishes a reduction algorithm for the computation of the dimension ind in the class of all finite
T
0
-spaces. The algorithm is based on the concept of the incidence matrix of a finite space.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-015-0261-0</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0101-8205 |
ispartof | Computational & applied mathematics, 2017-03, Vol.36 (1), p.791-803 |
issn | 0101-8205 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_1880767870 |
source | SpringerLink (Online service) |
subjects | Algorithms Applications of Mathematics Applied physics Computation Computational mathematics Computational Mathematics and Numerical Analysis Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematics Mathematics and Statistics Reduction |
title | Finite spaces: a reduction algorithm for the computation of the small inductive dimension |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T19%3A49%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finite%20spaces:%20a%20reduction%20algorithm%20for%20the%20computation%20of%20the%20small%20inductive%20dimension&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Georgiou,%20D.%20N.&rft.date=2017-03-01&rft.volume=36&rft.issue=1&rft.spage=791&rft.epage=803&rft.pages=791-803&rft.issn=0101-8205&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-015-0261-0&rft_dat=%3Cproquest_cross%3E1880767870%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880767870&rft_id=info:pmid/&rfr_iscdi=true |