Complete weight enumerators of a class of linear codes
Let F q be the finite field with q = p m elements, where p is an odd prime and m is a positive integer. For a positive integer t , let D ⊂ F q t and let Tr m be the trace function from F q onto F p . In this paper, let D = { ( x 1 , x 2 , … , x t ) ∈ F q t \ { ( 0 , 0 , … , 0 ) } : Tr m ( x 1 + x 2...
Gespeichert in:
Veröffentlicht in: | Designs, codes, and cryptography codes, and cryptography, 2017-04, Vol.83 (1), p.83-99 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
F
q
be the finite field with
q
=
p
m
elements, where
p
is an odd prime and
m
is a positive integer. For a positive integer
t
, let
D
⊂
F
q
t
and let
Tr
m
be the trace function from
F
q
onto
F
p
. In this paper, let
D
=
{
(
x
1
,
x
2
,
…
,
x
t
)
∈
F
q
t
\
{
(
0
,
0
,
…
,
0
)
}
:
Tr
m
(
x
1
+
x
2
+
⋯
+
x
t
)
=
0
}
,
we define a
p
-ary linear code
C
D
by
C
D
=
{
c
(
a
1
,
a
2
,
…
,
a
t
)
:
(
a
1
,
a
2
,
…
,
a
t
)
∈
F
q
t
}
,
where
c
(
a
1
,
a
2
,
…
,
a
t
)
=
(
Tr
m
(
a
1
x
1
2
+
a
2
x
2
2
+
⋯
+
a
t
x
t
2
)
)
(
x
1
,
x
2
,
…
,
x
t
)
∈
D
.
We shall present the complete weight enumerators of the linear codes
C
D
and give several classes of linear codes with a few weights. This paper generalizes the results of Yang and Yao (Des Codes Cryptogr,
2016
). |
---|---|
ISSN: | 0925-1022 1573-7586 |
DOI: | 10.1007/s10623-016-0205-8 |