Development of hydrogen–air fuel cells with membranes based on sulfonated polyheteroarylenes
Proton-conducting membranes based on sulfonated polynaphthoyleneimide (PNI) and polytriazole (PTA) are synthesized that can be used in portable hydrogen–air fuel cells (HAFC). Membrane–electrode assemblies (MEAs) based on sulfonated PNI and PTA membranes in individual HAFC manifested power and volta...
Gespeichert in:
Veröffentlicht in: | Russian journal of electrochemistry 2017, Vol.53 (1), p.86-91 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 91 |
---|---|
container_issue | 1 |
container_start_page | 86 |
container_title | Russian journal of electrochemistry |
container_volume | 53 |
creator | Emets, V. V. Ponomarev, I. I. Grinberg, V. A. Mayorova, N. A. Zharinova, M. Yu Volkova, Yu. A. Nizhnikovskii, E. A. Skupov, K. M. Razorenov, D. Yu Andreev, V. N. Ponomarev, Iv. I. |
description | Proton-conducting membranes based on sulfonated polynaphthoyleneimide (PNI) and polytriazole (PTA) are synthesized that can be used in portable hydrogen–air fuel cells (HAFC). Membrane–electrode assemblies (MEAs) based on sulfonated PNI and PTA membranes in individual HAFC manifested power and voltammetric characteristics exceeding the characteristics of MEA based on the commercial Nafion-212 membrane. Thus, the current density of 320 mA cm
–2
and the power density of 160 mW cm
–2
are obtained at the room temperature with no pressure or gas humidification at the voltage of 0.5 V. Also activity of the oxygen electroreduction Pt–Fe/C (30 wt % of metals in total) catalyst synthesized on the basis of coordination compounds is tested in MEA HAFC. It is shown that the values of power for MEAs with the cathodic Pt–Fe/C catalyst at the voltage of 0.5 V, at the room temperature, without additional pressure and gas humidification considerably exceed the corresponding values for MEAs with the commercial E-TEK 20% Pt/C catalyst. |
doi_str_mv | 10.1134/S1023193517010062 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880765212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880765212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-df501254c52540a0d34e3aa6b5972f058dc46fde4f4bbeb062898b75870f0bf93</originalsourceid><addsrcrecordid>eNp1UMtKxDAULaLgOPoB7gKuqzdJ06ZLGZ8w4ELdWpL2Zh6kTU1aZXb-g3_ol5hhXAji5j44j_tIklMK55Ty7OKRAuO05IIWQAFytpdMaA4y5Txj-7GOcLrFD5OjENYAIAtaTpKXK3xD6_oWu4E4Q5abxrsFdl8fn2rliRnRkhqtDeR9NSxJi632qsNAtArYENeRMFrjOjXErnd2s8QBvVN-YzHSjpMDo2zAk588TZ5vrp9md-n84fZ-djlPa07zIW2MAMpEVosYQEHDM-RK5VqUBTMgZFNnuWkwM5nWqON5spS6ELIAA9qUfJqc7Xx7715HDEO1dqPv4siKSglFLhhlkUV3rNq7EDyaqverNu5aUai2b6z-vDFq2E4TIrdboP_l_K_oGzXodgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880765212</pqid></control><display><type>article</type><title>Development of hydrogen–air fuel cells with membranes based on sulfonated polyheteroarylenes</title><source>Springer Nature - Complete Springer Journals</source><creator>Emets, V. V. ; Ponomarev, I. I. ; Grinberg, V. A. ; Mayorova, N. A. ; Zharinova, M. Yu ; Volkova, Yu. A. ; Nizhnikovskii, E. A. ; Skupov, K. M. ; Razorenov, D. Yu ; Andreev, V. N. ; Ponomarev, Iv. I.</creator><creatorcontrib>Emets, V. V. ; Ponomarev, I. I. ; Grinberg, V. A. ; Mayorova, N. A. ; Zharinova, M. Yu ; Volkova, Yu. A. ; Nizhnikovskii, E. A. ; Skupov, K. M. ; Razorenov, D. Yu ; Andreev, V. N. ; Ponomarev, Iv. I.</creatorcontrib><description>Proton-conducting membranes based on sulfonated polynaphthoyleneimide (PNI) and polytriazole (PTA) are synthesized that can be used in portable hydrogen–air fuel cells (HAFC). Membrane–electrode assemblies (MEAs) based on sulfonated PNI and PTA membranes in individual HAFC manifested power and voltammetric characteristics exceeding the characteristics of MEA based on the commercial Nafion-212 membrane. Thus, the current density of 320 mA cm
–2
and the power density of 160 mW cm
–2
are obtained at the room temperature with no pressure or gas humidification at the voltage of 0.5 V. Also activity of the oxygen electroreduction Pt–Fe/C (30 wt % of metals in total) catalyst synthesized on the basis of coordination compounds is tested in MEA HAFC. It is shown that the values of power for MEAs with the cathodic Pt–Fe/C catalyst at the voltage of 0.5 V, at the room temperature, without additional pressure and gas humidification considerably exceed the corresponding values for MEAs with the commercial E-TEK 20% Pt/C catalyst.</description><identifier>ISSN: 1023-1935</identifier><identifier>EISSN: 1608-3342</identifier><identifier>DOI: 10.1134/S1023193517010062</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>2015 ; Catalysts ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Coordination compounds ; Electric potential ; Electrochemistry ; Fuel cells ; Humidification ; Hydrogen oxygen fuel cells ; Iron ; Membranes ; October 21–23 ; Part 2 ; Physical Chemistry ; Room temperature ; Special Issue: X International Frumkin Symposium on Electrochemistry (Moscow ; Voltage</subject><ispartof>Russian journal of electrochemistry, 2017, Vol.53 (1), p.86-91</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-df501254c52540a0d34e3aa6b5972f058dc46fde4f4bbeb062898b75870f0bf93</citedby><cites>FETCH-LOGICAL-c316t-df501254c52540a0d34e3aa6b5972f058dc46fde4f4bbeb062898b75870f0bf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1023193517010062$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1023193517010062$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Emets, V. V.</creatorcontrib><creatorcontrib>Ponomarev, I. I.</creatorcontrib><creatorcontrib>Grinberg, V. A.</creatorcontrib><creatorcontrib>Mayorova, N. A.</creatorcontrib><creatorcontrib>Zharinova, M. Yu</creatorcontrib><creatorcontrib>Volkova, Yu. A.</creatorcontrib><creatorcontrib>Nizhnikovskii, E. A.</creatorcontrib><creatorcontrib>Skupov, K. M.</creatorcontrib><creatorcontrib>Razorenov, D. Yu</creatorcontrib><creatorcontrib>Andreev, V. N.</creatorcontrib><creatorcontrib>Ponomarev, Iv. I.</creatorcontrib><title>Development of hydrogen–air fuel cells with membranes based on sulfonated polyheteroarylenes</title><title>Russian journal of electrochemistry</title><addtitle>Russ J Electrochem</addtitle><description>Proton-conducting membranes based on sulfonated polynaphthoyleneimide (PNI) and polytriazole (PTA) are synthesized that can be used in portable hydrogen–air fuel cells (HAFC). Membrane–electrode assemblies (MEAs) based on sulfonated PNI and PTA membranes in individual HAFC manifested power and voltammetric characteristics exceeding the characteristics of MEA based on the commercial Nafion-212 membrane. Thus, the current density of 320 mA cm
–2
and the power density of 160 mW cm
–2
are obtained at the room temperature with no pressure or gas humidification at the voltage of 0.5 V. Also activity of the oxygen electroreduction Pt–Fe/C (30 wt % of metals in total) catalyst synthesized on the basis of coordination compounds is tested in MEA HAFC. It is shown that the values of power for MEAs with the cathodic Pt–Fe/C catalyst at the voltage of 0.5 V, at the room temperature, without additional pressure and gas humidification considerably exceed the corresponding values for MEAs with the commercial E-TEK 20% Pt/C catalyst.</description><subject>2015</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coordination compounds</subject><subject>Electric potential</subject><subject>Electrochemistry</subject><subject>Fuel cells</subject><subject>Humidification</subject><subject>Hydrogen oxygen fuel cells</subject><subject>Iron</subject><subject>Membranes</subject><subject>October 21–23</subject><subject>Part 2</subject><subject>Physical Chemistry</subject><subject>Room temperature</subject><subject>Special Issue: X International Frumkin Symposium on Electrochemistry (Moscow</subject><subject>Voltage</subject><issn>1023-1935</issn><issn>1608-3342</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAULaLgOPoB7gKuqzdJ06ZLGZ8w4ELdWpL2Zh6kTU1aZXb-g3_ol5hhXAji5j44j_tIklMK55Ty7OKRAuO05IIWQAFytpdMaA4y5Txj-7GOcLrFD5OjENYAIAtaTpKXK3xD6_oWu4E4Q5abxrsFdl8fn2rliRnRkhqtDeR9NSxJi632qsNAtArYENeRMFrjOjXErnd2s8QBvVN-YzHSjpMDo2zAk588TZ5vrp9md-n84fZ-djlPa07zIW2MAMpEVosYQEHDM-RK5VqUBTMgZFNnuWkwM5nWqON5spS6ELIAA9qUfJqc7Xx7715HDEO1dqPv4siKSglFLhhlkUV3rNq7EDyaqverNu5aUai2b6z-vDFq2E4TIrdboP_l_K_oGzXodgE</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Emets, V. V.</creator><creator>Ponomarev, I. I.</creator><creator>Grinberg, V. A.</creator><creator>Mayorova, N. A.</creator><creator>Zharinova, M. Yu</creator><creator>Volkova, Yu. A.</creator><creator>Nizhnikovskii, E. A.</creator><creator>Skupov, K. M.</creator><creator>Razorenov, D. Yu</creator><creator>Andreev, V. N.</creator><creator>Ponomarev, Iv. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Development of hydrogen–air fuel cells with membranes based on sulfonated polyheteroarylenes</title><author>Emets, V. V. ; Ponomarev, I. I. ; Grinberg, V. A. ; Mayorova, N. A. ; Zharinova, M. Yu ; Volkova, Yu. A. ; Nizhnikovskii, E. A. ; Skupov, K. M. ; Razorenov, D. Yu ; Andreev, V. N. ; Ponomarev, Iv. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-df501254c52540a0d34e3aa6b5972f058dc46fde4f4bbeb062898b75870f0bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2015</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coordination compounds</topic><topic>Electric potential</topic><topic>Electrochemistry</topic><topic>Fuel cells</topic><topic>Humidification</topic><topic>Hydrogen oxygen fuel cells</topic><topic>Iron</topic><topic>Membranes</topic><topic>October 21–23</topic><topic>Part 2</topic><topic>Physical Chemistry</topic><topic>Room temperature</topic><topic>Special Issue: X International Frumkin Symposium on Electrochemistry (Moscow</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emets, V. V.</creatorcontrib><creatorcontrib>Ponomarev, I. I.</creatorcontrib><creatorcontrib>Grinberg, V. A.</creatorcontrib><creatorcontrib>Mayorova, N. A.</creatorcontrib><creatorcontrib>Zharinova, M. Yu</creatorcontrib><creatorcontrib>Volkova, Yu. A.</creatorcontrib><creatorcontrib>Nizhnikovskii, E. A.</creatorcontrib><creatorcontrib>Skupov, K. M.</creatorcontrib><creatorcontrib>Razorenov, D. Yu</creatorcontrib><creatorcontrib>Andreev, V. N.</creatorcontrib><creatorcontrib>Ponomarev, Iv. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emets, V. V.</au><au>Ponomarev, I. I.</au><au>Grinberg, V. A.</au><au>Mayorova, N. A.</au><au>Zharinova, M. Yu</au><au>Volkova, Yu. A.</au><au>Nizhnikovskii, E. A.</au><au>Skupov, K. M.</au><au>Razorenov, D. Yu</au><au>Andreev, V. N.</au><au>Ponomarev, Iv. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of hydrogen–air fuel cells with membranes based on sulfonated polyheteroarylenes</atitle><jtitle>Russian journal of electrochemistry</jtitle><stitle>Russ J Electrochem</stitle><date>2017</date><risdate>2017</risdate><volume>53</volume><issue>1</issue><spage>86</spage><epage>91</epage><pages>86-91</pages><issn>1023-1935</issn><eissn>1608-3342</eissn><abstract>Proton-conducting membranes based on sulfonated polynaphthoyleneimide (PNI) and polytriazole (PTA) are synthesized that can be used in portable hydrogen–air fuel cells (HAFC). Membrane–electrode assemblies (MEAs) based on sulfonated PNI and PTA membranes in individual HAFC manifested power and voltammetric characteristics exceeding the characteristics of MEA based on the commercial Nafion-212 membrane. Thus, the current density of 320 mA cm
–2
and the power density of 160 mW cm
–2
are obtained at the room temperature with no pressure or gas humidification at the voltage of 0.5 V. Also activity of the oxygen electroreduction Pt–Fe/C (30 wt % of metals in total) catalyst synthesized on the basis of coordination compounds is tested in MEA HAFC. It is shown that the values of power for MEAs with the cathodic Pt–Fe/C catalyst at the voltage of 0.5 V, at the room temperature, without additional pressure and gas humidification considerably exceed the corresponding values for MEAs with the commercial E-TEK 20% Pt/C catalyst.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1023193517010062</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1023-1935 |
ispartof | Russian journal of electrochemistry, 2017, Vol.53 (1), p.86-91 |
issn | 1023-1935 1608-3342 |
language | eng |
recordid | cdi_proquest_journals_1880765212 |
source | Springer Nature - Complete Springer Journals |
subjects | 2015 Catalysts Chemical synthesis Chemistry Chemistry and Materials Science Coordination compounds Electric potential Electrochemistry Fuel cells Humidification Hydrogen oxygen fuel cells Iron Membranes October 21–23 Part 2 Physical Chemistry Room temperature Special Issue: X International Frumkin Symposium on Electrochemistry (Moscow Voltage |
title | Development of hydrogen–air fuel cells with membranes based on sulfonated polyheteroarylenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20hydrogen%E2%80%93air%20fuel%20cells%20with%20membranes%20based%20on%20sulfonated%20polyheteroarylenes&rft.jtitle=Russian%20journal%20of%20electrochemistry&rft.au=Emets,%20V.%20V.&rft.date=2017&rft.volume=53&rft.issue=1&rft.spage=86&rft.epage=91&rft.pages=86-91&rft.issn=1023-1935&rft.eissn=1608-3342&rft_id=info:doi/10.1134/S1023193517010062&rft_dat=%3Cproquest_cross%3E1880765212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880765212&rft_id=info:pmid/&rfr_iscdi=true |