Development of hydrogen–air fuel cells with membranes based on sulfonated polyheteroarylenes

Proton-conducting membranes based on sulfonated polynaphthoyleneimide (PNI) and polytriazole (PTA) are synthesized that can be used in portable hydrogen–air fuel cells (HAFC). Membrane–electrode assemblies (MEAs) based on sulfonated PNI and PTA membranes in individual HAFC manifested power and volta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Russian journal of electrochemistry 2017, Vol.53 (1), p.86-91
Hauptverfasser: Emets, V. V., Ponomarev, I. I., Grinberg, V. A., Mayorova, N. A., Zharinova, M. Yu, Volkova, Yu. A., Nizhnikovskii, E. A., Skupov, K. M., Razorenov, D. Yu, Andreev, V. N., Ponomarev, Iv. I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 1
container_start_page 86
container_title Russian journal of electrochemistry
container_volume 53
creator Emets, V. V.
Ponomarev, I. I.
Grinberg, V. A.
Mayorova, N. A.
Zharinova, M. Yu
Volkova, Yu. A.
Nizhnikovskii, E. A.
Skupov, K. M.
Razorenov, D. Yu
Andreev, V. N.
Ponomarev, Iv. I.
description Proton-conducting membranes based on sulfonated polynaphthoyleneimide (PNI) and polytriazole (PTA) are synthesized that can be used in portable hydrogen–air fuel cells (HAFC). Membrane–electrode assemblies (MEAs) based on sulfonated PNI and PTA membranes in individual HAFC manifested power and voltammetric characteristics exceeding the characteristics of MEA based on the commercial Nafion-212 membrane. Thus, the current density of 320 mA cm –2 and the power density of 160 mW cm –2 are obtained at the room temperature with no pressure or gas humidification at the voltage of 0.5 V. Also activity of the oxygen electroreduction Pt–Fe/C (30 wt % of metals in total) catalyst synthesized on the basis of coordination compounds is tested in MEA HAFC. It is shown that the values of power for MEAs with the cathodic Pt–Fe/C catalyst at the voltage of 0.5 V, at the room temperature, without additional pressure and gas humidification considerably exceed the corresponding values for MEAs with the commercial E-TEK 20% Pt/C catalyst.
doi_str_mv 10.1134/S1023193517010062
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880765212</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880765212</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-df501254c52540a0d34e3aa6b5972f058dc46fde4f4bbeb062898b75870f0bf93</originalsourceid><addsrcrecordid>eNp1UMtKxDAULaLgOPoB7gKuqzdJ06ZLGZ8w4ELdWpL2Zh6kTU1aZXb-g3_ol5hhXAji5j44j_tIklMK55Ty7OKRAuO05IIWQAFytpdMaA4y5Txj-7GOcLrFD5OjENYAIAtaTpKXK3xD6_oWu4E4Q5abxrsFdl8fn2rliRnRkhqtDeR9NSxJi632qsNAtArYENeRMFrjOjXErnd2s8QBvVN-YzHSjpMDo2zAk588TZ5vrp9md-n84fZ-djlPa07zIW2MAMpEVosYQEHDM-RK5VqUBTMgZFNnuWkwM5nWqON5spS6ELIAA9qUfJqc7Xx7715HDEO1dqPv4siKSglFLhhlkUV3rNq7EDyaqverNu5aUai2b6z-vDFq2E4TIrdboP_l_K_oGzXodgE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880765212</pqid></control><display><type>article</type><title>Development of hydrogen–air fuel cells with membranes based on sulfonated polyheteroarylenes</title><source>Springer Nature - Complete Springer Journals</source><creator>Emets, V. V. ; Ponomarev, I. I. ; Grinberg, V. A. ; Mayorova, N. A. ; Zharinova, M. Yu ; Volkova, Yu. A. ; Nizhnikovskii, E. A. ; Skupov, K. M. ; Razorenov, D. Yu ; Andreev, V. N. ; Ponomarev, Iv. I.</creator><creatorcontrib>Emets, V. V. ; Ponomarev, I. I. ; Grinberg, V. A. ; Mayorova, N. A. ; Zharinova, M. Yu ; Volkova, Yu. A. ; Nizhnikovskii, E. A. ; Skupov, K. M. ; Razorenov, D. Yu ; Andreev, V. N. ; Ponomarev, Iv. I.</creatorcontrib><description>Proton-conducting membranes based on sulfonated polynaphthoyleneimide (PNI) and polytriazole (PTA) are synthesized that can be used in portable hydrogen–air fuel cells (HAFC). Membrane–electrode assemblies (MEAs) based on sulfonated PNI and PTA membranes in individual HAFC manifested power and voltammetric characteristics exceeding the characteristics of MEA based on the commercial Nafion-212 membrane. Thus, the current density of 320 mA cm –2 and the power density of 160 mW cm –2 are obtained at the room temperature with no pressure or gas humidification at the voltage of 0.5 V. Also activity of the oxygen electroreduction Pt–Fe/C (30 wt % of metals in total) catalyst synthesized on the basis of coordination compounds is tested in MEA HAFC. It is shown that the values of power for MEAs with the cathodic Pt–Fe/C catalyst at the voltage of 0.5 V, at the room temperature, without additional pressure and gas humidification considerably exceed the corresponding values for MEAs with the commercial E-TEK 20% Pt/C catalyst.</description><identifier>ISSN: 1023-1935</identifier><identifier>EISSN: 1608-3342</identifier><identifier>DOI: 10.1134/S1023193517010062</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>2015 ; Catalysts ; Chemical synthesis ; Chemistry ; Chemistry and Materials Science ; Coordination compounds ; Electric potential ; Electrochemistry ; Fuel cells ; Humidification ; Hydrogen oxygen fuel cells ; Iron ; Membranes ; October 21–23 ; Part 2 ; Physical Chemistry ; Room temperature ; Special Issue: X International Frumkin Symposium on Electrochemistry (Moscow ; Voltage</subject><ispartof>Russian journal of electrochemistry, 2017, Vol.53 (1), p.86-91</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-df501254c52540a0d34e3aa6b5972f058dc46fde4f4bbeb062898b75870f0bf93</citedby><cites>FETCH-LOGICAL-c316t-df501254c52540a0d34e3aa6b5972f058dc46fde4f4bbeb062898b75870f0bf93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S1023193517010062$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S1023193517010062$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Emets, V. V.</creatorcontrib><creatorcontrib>Ponomarev, I. I.</creatorcontrib><creatorcontrib>Grinberg, V. A.</creatorcontrib><creatorcontrib>Mayorova, N. A.</creatorcontrib><creatorcontrib>Zharinova, M. Yu</creatorcontrib><creatorcontrib>Volkova, Yu. A.</creatorcontrib><creatorcontrib>Nizhnikovskii, E. A.</creatorcontrib><creatorcontrib>Skupov, K. M.</creatorcontrib><creatorcontrib>Razorenov, D. Yu</creatorcontrib><creatorcontrib>Andreev, V. N.</creatorcontrib><creatorcontrib>Ponomarev, Iv. I.</creatorcontrib><title>Development of hydrogen–air fuel cells with membranes based on sulfonated polyheteroarylenes</title><title>Russian journal of electrochemistry</title><addtitle>Russ J Electrochem</addtitle><description>Proton-conducting membranes based on sulfonated polynaphthoyleneimide (PNI) and polytriazole (PTA) are synthesized that can be used in portable hydrogen–air fuel cells (HAFC). Membrane–electrode assemblies (MEAs) based on sulfonated PNI and PTA membranes in individual HAFC manifested power and voltammetric characteristics exceeding the characteristics of MEA based on the commercial Nafion-212 membrane. Thus, the current density of 320 mA cm –2 and the power density of 160 mW cm –2 are obtained at the room temperature with no pressure or gas humidification at the voltage of 0.5 V. Also activity of the oxygen electroreduction Pt–Fe/C (30 wt % of metals in total) catalyst synthesized on the basis of coordination compounds is tested in MEA HAFC. It is shown that the values of power for MEAs with the cathodic Pt–Fe/C catalyst at the voltage of 0.5 V, at the room temperature, without additional pressure and gas humidification considerably exceed the corresponding values for MEAs with the commercial E-TEK 20% Pt/C catalyst.</description><subject>2015</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coordination compounds</subject><subject>Electric potential</subject><subject>Electrochemistry</subject><subject>Fuel cells</subject><subject>Humidification</subject><subject>Hydrogen oxygen fuel cells</subject><subject>Iron</subject><subject>Membranes</subject><subject>October 21–23</subject><subject>Part 2</subject><subject>Physical Chemistry</subject><subject>Room temperature</subject><subject>Special Issue: X International Frumkin Symposium on Electrochemistry (Moscow</subject><subject>Voltage</subject><issn>1023-1935</issn><issn>1608-3342</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1UMtKxDAULaLgOPoB7gKuqzdJ06ZLGZ8w4ELdWpL2Zh6kTU1aZXb-g3_ol5hhXAji5j44j_tIklMK55Ty7OKRAuO05IIWQAFytpdMaA4y5Txj-7GOcLrFD5OjENYAIAtaTpKXK3xD6_oWu4E4Q5abxrsFdl8fn2rliRnRkhqtDeR9NSxJi632qsNAtArYENeRMFrjOjXErnd2s8QBvVN-YzHSjpMDo2zAk588TZ5vrp9md-n84fZ-djlPa07zIW2MAMpEVosYQEHDM-RK5VqUBTMgZFNnuWkwM5nWqON5spS6ELIAA9qUfJqc7Xx7715HDEO1dqPv4siKSglFLhhlkUV3rNq7EDyaqverNu5aUai2b6z-vDFq2E4TIrdboP_l_K_oGzXodgE</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Emets, V. V.</creator><creator>Ponomarev, I. I.</creator><creator>Grinberg, V. A.</creator><creator>Mayorova, N. A.</creator><creator>Zharinova, M. Yu</creator><creator>Volkova, Yu. A.</creator><creator>Nizhnikovskii, E. A.</creator><creator>Skupov, K. M.</creator><creator>Razorenov, D. Yu</creator><creator>Andreev, V. N.</creator><creator>Ponomarev, Iv. I.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Development of hydrogen–air fuel cells with membranes based on sulfonated polyheteroarylenes</title><author>Emets, V. V. ; Ponomarev, I. I. ; Grinberg, V. A. ; Mayorova, N. A. ; Zharinova, M. Yu ; Volkova, Yu. A. ; Nizhnikovskii, E. A. ; Skupov, K. M. ; Razorenov, D. Yu ; Andreev, V. N. ; Ponomarev, Iv. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-df501254c52540a0d34e3aa6b5972f058dc46fde4f4bbeb062898b75870f0bf93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>2015</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coordination compounds</topic><topic>Electric potential</topic><topic>Electrochemistry</topic><topic>Fuel cells</topic><topic>Humidification</topic><topic>Hydrogen oxygen fuel cells</topic><topic>Iron</topic><topic>Membranes</topic><topic>October 21–23</topic><topic>Part 2</topic><topic>Physical Chemistry</topic><topic>Room temperature</topic><topic>Special Issue: X International Frumkin Symposium on Electrochemistry (Moscow</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Emets, V. V.</creatorcontrib><creatorcontrib>Ponomarev, I. I.</creatorcontrib><creatorcontrib>Grinberg, V. A.</creatorcontrib><creatorcontrib>Mayorova, N. A.</creatorcontrib><creatorcontrib>Zharinova, M. Yu</creatorcontrib><creatorcontrib>Volkova, Yu. A.</creatorcontrib><creatorcontrib>Nizhnikovskii, E. A.</creatorcontrib><creatorcontrib>Skupov, K. M.</creatorcontrib><creatorcontrib>Razorenov, D. Yu</creatorcontrib><creatorcontrib>Andreev, V. N.</creatorcontrib><creatorcontrib>Ponomarev, Iv. I.</creatorcontrib><collection>CrossRef</collection><jtitle>Russian journal of electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Emets, V. V.</au><au>Ponomarev, I. I.</au><au>Grinberg, V. A.</au><au>Mayorova, N. A.</au><au>Zharinova, M. Yu</au><au>Volkova, Yu. A.</au><au>Nizhnikovskii, E. A.</au><au>Skupov, K. M.</au><au>Razorenov, D. Yu</au><au>Andreev, V. N.</au><au>Ponomarev, Iv. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of hydrogen–air fuel cells with membranes based on sulfonated polyheteroarylenes</atitle><jtitle>Russian journal of electrochemistry</jtitle><stitle>Russ J Electrochem</stitle><date>2017</date><risdate>2017</risdate><volume>53</volume><issue>1</issue><spage>86</spage><epage>91</epage><pages>86-91</pages><issn>1023-1935</issn><eissn>1608-3342</eissn><abstract>Proton-conducting membranes based on sulfonated polynaphthoyleneimide (PNI) and polytriazole (PTA) are synthesized that can be used in portable hydrogen–air fuel cells (HAFC). Membrane–electrode assemblies (MEAs) based on sulfonated PNI and PTA membranes in individual HAFC manifested power and voltammetric characteristics exceeding the characteristics of MEA based on the commercial Nafion-212 membrane. Thus, the current density of 320 mA cm –2 and the power density of 160 mW cm –2 are obtained at the room temperature with no pressure or gas humidification at the voltage of 0.5 V. Also activity of the oxygen electroreduction Pt–Fe/C (30 wt % of metals in total) catalyst synthesized on the basis of coordination compounds is tested in MEA HAFC. It is shown that the values of power for MEAs with the cathodic Pt–Fe/C catalyst at the voltage of 0.5 V, at the room temperature, without additional pressure and gas humidification considerably exceed the corresponding values for MEAs with the commercial E-TEK 20% Pt/C catalyst.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S1023193517010062</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1023-1935
ispartof Russian journal of electrochemistry, 2017, Vol.53 (1), p.86-91
issn 1023-1935
1608-3342
language eng
recordid cdi_proquest_journals_1880765212
source Springer Nature - Complete Springer Journals
subjects 2015
Catalysts
Chemical synthesis
Chemistry
Chemistry and Materials Science
Coordination compounds
Electric potential
Electrochemistry
Fuel cells
Humidification
Hydrogen oxygen fuel cells
Iron
Membranes
October 21–23
Part 2
Physical Chemistry
Room temperature
Special Issue: X International Frumkin Symposium on Electrochemistry (Moscow
Voltage
title Development of hydrogen–air fuel cells with membranes based on sulfonated polyheteroarylenes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T22%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20hydrogen%E2%80%93air%20fuel%20cells%20with%20membranes%20based%20on%20sulfonated%20polyheteroarylenes&rft.jtitle=Russian%20journal%20of%20electrochemistry&rft.au=Emets,%20V.%20V.&rft.date=2017&rft.volume=53&rft.issue=1&rft.spage=86&rft.epage=91&rft.pages=86-91&rft.issn=1023-1935&rft.eissn=1608-3342&rft_id=info:doi/10.1134/S1023193517010062&rft_dat=%3Cproquest_cross%3E1880765212%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880765212&rft_id=info:pmid/&rfr_iscdi=true