Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production
In this study, a computational model is developed for the estimation of the equilibrium composition of WGSR (water gas shift reaction) based on the stoichiometric and nonstoichiometric thermodynamic approaches. The model employs the Peng–Robinson equation of state (PR-EoS) formulation and the Gibbs...
Gespeichert in:
Veröffentlicht in: | Theoretical foundations of chemical engineering 2017, Vol.51 (1), p.76-87 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 87 |
---|---|
container_issue | 1 |
container_start_page | 76 |
container_title | Theoretical foundations of chemical engineering |
container_volume | 51 |
creator | Demirel, E. Ayas, N. |
description | In this study, a computational model is developed for the estimation of the equilibrium composition of WGSR (water gas shift reaction) based on the stoichiometric and nonstoichiometric thermodynamic approaches. The model employs the Peng–Robinson equation of state (PR-EoS) formulation and the Gibbs free energy minimization. A Matlab computer program is developed for the numerical solution of a highly nonlinear equation of systems satisfying thermodynamic constraints. Molar fractions of each species are determined for different physical conditions using the proposed computational model and the computer code. Comparisons of model predictions with previous results show that molar fractions can be computed accurately using the present computational algorithm. On the basis of the numerical tests, a novel empirical expression is proposed to determine the hydrogen yield for energy considerations. |
doi_str_mv | 10.1134/S0040579517010067 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880765014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880765014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-835e6bb6d45971e20521c1865465ad7d8f725106f5c00756de9cc15de4fe3b4f3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WZNknboyz-gwUPrueSTSZtlt12TVpkv71d60EQTzPwfu89eIxdI9wiZuLuDUCAzEuJOSCAyk_YDBUUSSYyPGWzo5wc9XN2EeMGAEqlyhmjVUNh19lDq3fe8PGjrW9r3jneN8Q_dU8hqXXksfGu54G06X3Xct_yOOwpmOB7b_R2IrnrAm8ONnQ1tXwfOjt845fszOltpKufO2fvjw-rxXOyfH16WdwvEyOw7JMik6TWa2WFLHOkFGSKBgslhZLa5rZweSoRlJMGIJfKUmkMSkvCUbYWLpuzmyl3rP4YKPbVphtCO1ZWWBSQKwkoRgonyoQuxkCu2ge_0-FQIVTHNas_a46edPLEkW1rCr-S_zV9AaKld18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880765014</pqid></control><display><type>article</type><title>Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production</title><source>SpringerLink Journals - AutoHoldings</source><creator>Demirel, E. ; Ayas, N.</creator><creatorcontrib>Demirel, E. ; Ayas, N.</creatorcontrib><description>In this study, a computational model is developed for the estimation of the equilibrium composition of WGSR (water gas shift reaction) based on the stoichiometric and nonstoichiometric thermodynamic approaches. The model employs the Peng–Robinson equation of state (PR-EoS) formulation and the Gibbs free energy minimization. A Matlab computer program is developed for the numerical solution of a highly nonlinear equation of systems satisfying thermodynamic constraints. Molar fractions of each species are determined for different physical conditions using the proposed computational model and the computer code. Comparisons of model predictions with previous results show that molar fractions can be computed accurately using the present computational algorithm. On the basis of the numerical tests, a novel empirical expression is proposed to determine the hydrogen yield for energy considerations.</description><identifier>ISSN: 0040-5795</identifier><identifier>EISSN: 1608-3431</identifier><identifier>DOI: 10.1134/S0040579517010067</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Chemistry ; Chemistry and Materials Science ; Equations of state ; Gibbs free energy ; Hydrogen production ; Industrial Chemistry/Chemical Engineering ; Nonlinear equations ; Shift reaction ; Thermodynamic models ; Thermodynamics ; Water gas</subject><ispartof>Theoretical foundations of chemical engineering, 2017, Vol.51 (1), p.76-87</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-835e6bb6d45971e20521c1865465ad7d8f725106f5c00756de9cc15de4fe3b4f3</citedby><cites>FETCH-LOGICAL-c419t-835e6bb6d45971e20521c1865465ad7d8f725106f5c00756de9cc15de4fe3b4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040579517010067$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040579517010067$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Demirel, E.</creatorcontrib><creatorcontrib>Ayas, N.</creatorcontrib><title>Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production</title><title>Theoretical foundations of chemical engineering</title><addtitle>Theor Found Chem Eng</addtitle><description>In this study, a computational model is developed for the estimation of the equilibrium composition of WGSR (water gas shift reaction) based on the stoichiometric and nonstoichiometric thermodynamic approaches. The model employs the Peng–Robinson equation of state (PR-EoS) formulation and the Gibbs free energy minimization. A Matlab computer program is developed for the numerical solution of a highly nonlinear equation of systems satisfying thermodynamic constraints. Molar fractions of each species are determined for different physical conditions using the proposed computational model and the computer code. Comparisons of model predictions with previous results show that molar fractions can be computed accurately using the present computational algorithm. On the basis of the numerical tests, a novel empirical expression is proposed to determine the hydrogen yield for energy considerations.</description><subject>Algorithms</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Equations of state</subject><subject>Gibbs free energy</subject><subject>Hydrogen production</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Nonlinear equations</subject><subject>Shift reaction</subject><subject>Thermodynamic models</subject><subject>Thermodynamics</subject><subject>Water gas</subject><issn>0040-5795</issn><issn>1608-3431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WZNknboyz-gwUPrueSTSZtlt12TVpkv71d60EQTzPwfu89eIxdI9wiZuLuDUCAzEuJOSCAyk_YDBUUSSYyPGWzo5wc9XN2EeMGAEqlyhmjVUNh19lDq3fe8PGjrW9r3jneN8Q_dU8hqXXksfGu54G06X3Xct_yOOwpmOB7b_R2IrnrAm8ONnQ1tXwfOjt845fszOltpKufO2fvjw-rxXOyfH16WdwvEyOw7JMik6TWa2WFLHOkFGSKBgslhZLa5rZweSoRlJMGIJfKUmkMSkvCUbYWLpuzmyl3rP4YKPbVphtCO1ZWWBSQKwkoRgonyoQuxkCu2ge_0-FQIVTHNas_a46edPLEkW1rCr-S_zV9AaKld18</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Demirel, E.</creator><creator>Ayas, N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production</title><author>Demirel, E. ; Ayas, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-835e6bb6d45971e20521c1865465ad7d8f725106f5c00756de9cc15de4fe3b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Equations of state</topic><topic>Gibbs free energy</topic><topic>Hydrogen production</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Nonlinear equations</topic><topic>Shift reaction</topic><topic>Thermodynamic models</topic><topic>Thermodynamics</topic><topic>Water gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demirel, E.</creatorcontrib><creatorcontrib>Ayas, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical foundations of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demirel, E.</au><au>Ayas, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production</atitle><jtitle>Theoretical foundations of chemical engineering</jtitle><stitle>Theor Found Chem Eng</stitle><date>2017</date><risdate>2017</risdate><volume>51</volume><issue>1</issue><spage>76</spage><epage>87</epage><pages>76-87</pages><issn>0040-5795</issn><eissn>1608-3431</eissn><abstract>In this study, a computational model is developed for the estimation of the equilibrium composition of WGSR (water gas shift reaction) based on the stoichiometric and nonstoichiometric thermodynamic approaches. The model employs the Peng–Robinson equation of state (PR-EoS) formulation and the Gibbs free energy minimization. A Matlab computer program is developed for the numerical solution of a highly nonlinear equation of systems satisfying thermodynamic constraints. Molar fractions of each species are determined for different physical conditions using the proposed computational model and the computer code. Comparisons of model predictions with previous results show that molar fractions can be computed accurately using the present computational algorithm. On the basis of the numerical tests, a novel empirical expression is proposed to determine the hydrogen yield for energy considerations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040579517010067</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0040-5795 |
ispartof | Theoretical foundations of chemical engineering, 2017, Vol.51 (1), p.76-87 |
issn | 0040-5795 1608-3431 |
language | eng |
recordid | cdi_proquest_journals_1880765014 |
source | SpringerLink Journals - AutoHoldings |
subjects | Algorithms Chemistry Chemistry and Materials Science Equations of state Gibbs free energy Hydrogen production Industrial Chemistry/Chemical Engineering Nonlinear equations Shift reaction Thermodynamic models Thermodynamics Water gas |
title | Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20modeling%20of%20the%20water-gas%20shift%20reaction%20in%20supercritical%20water%20for%20hydrogen%20production&rft.jtitle=Theoretical%20foundations%20of%20chemical%20engineering&rft.au=Demirel,%20E.&rft.date=2017&rft.volume=51&rft.issue=1&rft.spage=76&rft.epage=87&rft.pages=76-87&rft.issn=0040-5795&rft.eissn=1608-3431&rft_id=info:doi/10.1134/S0040579517010067&rft_dat=%3Cproquest_cross%3E1880765014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880765014&rft_id=info:pmid/&rfr_iscdi=true |