Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production

In this study, a computational model is developed for the estimation of the equilibrium composition of WGSR (water gas shift reaction) based on the stoichiometric and nonstoichiometric thermodynamic approaches. The model employs the Peng–Robinson equation of state (PR-EoS) formulation and the Gibbs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Theoretical foundations of chemical engineering 2017, Vol.51 (1), p.76-87
Hauptverfasser: Demirel, E., Ayas, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 87
container_issue 1
container_start_page 76
container_title Theoretical foundations of chemical engineering
container_volume 51
creator Demirel, E.
Ayas, N.
description In this study, a computational model is developed for the estimation of the equilibrium composition of WGSR (water gas shift reaction) based on the stoichiometric and nonstoichiometric thermodynamic approaches. The model employs the Peng–Robinson equation of state (PR-EoS) formulation and the Gibbs free energy minimization. A Matlab computer program is developed for the numerical solution of a highly nonlinear equation of systems satisfying thermodynamic constraints. Molar fractions of each species are determined for different physical conditions using the proposed computational model and the computer code. Comparisons of model predictions with previous results show that molar fractions can be computed accurately using the present computational algorithm. On the basis of the numerical tests, a novel empirical expression is proposed to determine the hydrogen yield for energy considerations.
doi_str_mv 10.1134/S0040579517010067
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880765014</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880765014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-835e6bb6d45971e20521c1865465ad7d8f725106f5c00756de9cc15de4fe3b4f3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WZNknboyz-gwUPrueSTSZtlt12TVpkv71d60EQTzPwfu89eIxdI9wiZuLuDUCAzEuJOSCAyk_YDBUUSSYyPGWzo5wc9XN2EeMGAEqlyhmjVUNh19lDq3fe8PGjrW9r3jneN8Q_dU8hqXXksfGu54G06X3Xct_yOOwpmOB7b_R2IrnrAm8ONnQ1tXwfOjt845fszOltpKufO2fvjw-rxXOyfH16WdwvEyOw7JMik6TWa2WFLHOkFGSKBgslhZLa5rZweSoRlJMGIJfKUmkMSkvCUbYWLpuzmyl3rP4YKPbVphtCO1ZWWBSQKwkoRgonyoQuxkCu2ge_0-FQIVTHNas_a46edPLEkW1rCr-S_zV9AaKld18</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880765014</pqid></control><display><type>article</type><title>Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production</title><source>SpringerLink Journals - AutoHoldings</source><creator>Demirel, E. ; Ayas, N.</creator><creatorcontrib>Demirel, E. ; Ayas, N.</creatorcontrib><description>In this study, a computational model is developed for the estimation of the equilibrium composition of WGSR (water gas shift reaction) based on the stoichiometric and nonstoichiometric thermodynamic approaches. The model employs the Peng–Robinson equation of state (PR-EoS) formulation and the Gibbs free energy minimization. A Matlab computer program is developed for the numerical solution of a highly nonlinear equation of systems satisfying thermodynamic constraints. Molar fractions of each species are determined for different physical conditions using the proposed computational model and the computer code. Comparisons of model predictions with previous results show that molar fractions can be computed accurately using the present computational algorithm. On the basis of the numerical tests, a novel empirical expression is proposed to determine the hydrogen yield for energy considerations.</description><identifier>ISSN: 0040-5795</identifier><identifier>EISSN: 1608-3431</identifier><identifier>DOI: 10.1134/S0040579517010067</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Algorithms ; Chemistry ; Chemistry and Materials Science ; Equations of state ; Gibbs free energy ; Hydrogen production ; Industrial Chemistry/Chemical Engineering ; Nonlinear equations ; Shift reaction ; Thermodynamic models ; Thermodynamics ; Water gas</subject><ispartof>Theoretical foundations of chemical engineering, 2017, Vol.51 (1), p.76-87</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-835e6bb6d45971e20521c1865465ad7d8f725106f5c00756de9cc15de4fe3b4f3</citedby><cites>FETCH-LOGICAL-c419t-835e6bb6d45971e20521c1865465ad7d8f725106f5c00756de9cc15de4fe3b4f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0040579517010067$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0040579517010067$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Demirel, E.</creatorcontrib><creatorcontrib>Ayas, N.</creatorcontrib><title>Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production</title><title>Theoretical foundations of chemical engineering</title><addtitle>Theor Found Chem Eng</addtitle><description>In this study, a computational model is developed for the estimation of the equilibrium composition of WGSR (water gas shift reaction) based on the stoichiometric and nonstoichiometric thermodynamic approaches. The model employs the Peng–Robinson equation of state (PR-EoS) formulation and the Gibbs free energy minimization. A Matlab computer program is developed for the numerical solution of a highly nonlinear equation of systems satisfying thermodynamic constraints. Molar fractions of each species are determined for different physical conditions using the proposed computational model and the computer code. Comparisons of model predictions with previous results show that molar fractions can be computed accurately using the present computational algorithm. On the basis of the numerical tests, a novel empirical expression is proposed to determine the hydrogen yield for energy considerations.</description><subject>Algorithms</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Equations of state</subject><subject>Gibbs free energy</subject><subject>Hydrogen production</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Nonlinear equations</subject><subject>Shift reaction</subject><subject>Thermodynamic models</subject><subject>Thermodynamics</subject><subject>Water gas</subject><issn>0040-5795</issn><issn>1608-3431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9WZNknboyz-gwUPrueSTSZtlt12TVpkv71d60EQTzPwfu89eIxdI9wiZuLuDUCAzEuJOSCAyk_YDBUUSSYyPGWzo5wc9XN2EeMGAEqlyhmjVUNh19lDq3fe8PGjrW9r3jneN8Q_dU8hqXXksfGu54G06X3Xct_yOOwpmOB7b_R2IrnrAm8ONnQ1tXwfOjt845fszOltpKufO2fvjw-rxXOyfH16WdwvEyOw7JMik6TWa2WFLHOkFGSKBgslhZLa5rZweSoRlJMGIJfKUmkMSkvCUbYWLpuzmyl3rP4YKPbVphtCO1ZWWBSQKwkoRgonyoQuxkCu2ge_0-FQIVTHNas_a46edPLEkW1rCr-S_zV9AaKld18</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Demirel, E.</creator><creator>Ayas, N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2017</creationdate><title>Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production</title><author>Demirel, E. ; Ayas, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-835e6bb6d45971e20521c1865465ad7d8f725106f5c00756de9cc15de4fe3b4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Equations of state</topic><topic>Gibbs free energy</topic><topic>Hydrogen production</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Nonlinear equations</topic><topic>Shift reaction</topic><topic>Thermodynamic models</topic><topic>Thermodynamics</topic><topic>Water gas</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demirel, E.</creatorcontrib><creatorcontrib>Ayas, N.</creatorcontrib><collection>CrossRef</collection><jtitle>Theoretical foundations of chemical engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demirel, E.</au><au>Ayas, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production</atitle><jtitle>Theoretical foundations of chemical engineering</jtitle><stitle>Theor Found Chem Eng</stitle><date>2017</date><risdate>2017</risdate><volume>51</volume><issue>1</issue><spage>76</spage><epage>87</epage><pages>76-87</pages><issn>0040-5795</issn><eissn>1608-3431</eissn><abstract>In this study, a computational model is developed for the estimation of the equilibrium composition of WGSR (water gas shift reaction) based on the stoichiometric and nonstoichiometric thermodynamic approaches. The model employs the Peng–Robinson equation of state (PR-EoS) formulation and the Gibbs free energy minimization. A Matlab computer program is developed for the numerical solution of a highly nonlinear equation of systems satisfying thermodynamic constraints. Molar fractions of each species are determined for different physical conditions using the proposed computational model and the computer code. Comparisons of model predictions with previous results show that molar fractions can be computed accurately using the present computational algorithm. On the basis of the numerical tests, a novel empirical expression is proposed to determine the hydrogen yield for energy considerations.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0040579517010067</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0040-5795
ispartof Theoretical foundations of chemical engineering, 2017, Vol.51 (1), p.76-87
issn 0040-5795
1608-3431
language eng
recordid cdi_proquest_journals_1880765014
source SpringerLink Journals - AutoHoldings
subjects Algorithms
Chemistry
Chemistry and Materials Science
Equations of state
Gibbs free energy
Hydrogen production
Industrial Chemistry/Chemical Engineering
Nonlinear equations
Shift reaction
Thermodynamic models
Thermodynamics
Water gas
title Thermodynamic modeling of the water-gas shift reaction in supercritical water for hydrogen production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A34%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermodynamic%20modeling%20of%20the%20water-gas%20shift%20reaction%20in%20supercritical%20water%20for%20hydrogen%20production&rft.jtitle=Theoretical%20foundations%20of%20chemical%20engineering&rft.au=Demirel,%20E.&rft.date=2017&rft.volume=51&rft.issue=1&rft.spage=76&rft.epage=87&rft.pages=76-87&rft.issn=0040-5795&rft.eissn=1608-3431&rft_id=info:doi/10.1134/S0040579517010067&rft_dat=%3Cproquest_cross%3E1880765014%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880765014&rft_id=info:pmid/&rfr_iscdi=true