Slow and Fast Escape for Open Intermittent Maps
If a system mixes too slowly, putting a hole in it can completely destroy the richness of the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly mixing measures. We show that there are three regimes: (1) standard hyperbolic-like behavior where the rate...
Gespeichert in:
Veröffentlicht in: | Communications in mathematical physics 2017-04, Vol.351 (2), p.775-835 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 835 |
---|---|
container_issue | 2 |
container_start_page | 775 |
container_title | Communications in mathematical physics |
container_volume | 351 |
creator | Demers, Mark F. Todd, Mike |
description | If a system mixes too slowly, putting a hole in it can completely destroy the richness of the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly mixing measures. We show that there are three regimes: (1) standard hyperbolic-like behavior where the rate of mixing is faster than the rate of escape through the hole, there is a unique limiting absolutely continuous conditionally invariant measure (accim) and there is a complete thermodynamic description of the dynamics on the survivor set; (2) an intermediate regime, where the rate of mixing and escape through the hole coincide, limiting accims exist, but much of the thermodynamic picture breaks down; (3) a subexponentially mixing regime where the slow mixing means that mass simply accumulates on the parabolic fixed point. We give a complete picture of the transitions and stability properties (in the size of the hole and as we move through the family) in this class of open systems. In particular, we are able to recover a form of stability in the third regime above via the dynamics on the survivor set, even when no limiting accim exists. |
doi_str_mv | 10.1007/s00220-017-2829-6 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880760547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880760547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-396e02c0417f502b0605a9379ca3fc371a43dde329f499da45205f5ecba08bd13</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EEqXwA9gsMZve2Ykdj6hqaaWiDsBsOY6NWrVJsF0h_j2pwsDCdMv73kmPkHuERwRQswTAOTBAxXjFNZMXZIKF4Aw0yksyAUBgQqK8Jjcp7QFAcyknZPZ66L6obRu6tCnTRXK29zR0kW5739J1m3087nL2baYvtk-35CrYQ_J3v3dK3peLt_mKbbbP6_nThjmBMjOhpQfuoEAVSuA1SCitFko7K4ITCm0hmsYLrkOhdWOLkkMZSu9qC1XdoJiSh9Hbx-7z5FM2--4U2-GlwaoCNfgKNVA4Ui52KUUfTB93Rxu_DYI5dzFjFzN0MecuRg4bPm7SwLYfPv4x_zv6ASJJYuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880760547</pqid></control><display><type>article</type><title>Slow and Fast Escape for Open Intermittent Maps</title><source>SpringerLink Journals - AutoHoldings</source><creator>Demers, Mark F. ; Todd, Mike</creator><creatorcontrib>Demers, Mark F. ; Todd, Mike</creatorcontrib><description>If a system mixes too slowly, putting a hole in it can completely destroy the richness of the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly mixing measures. We show that there are three regimes: (1) standard hyperbolic-like behavior where the rate of mixing is faster than the rate of escape through the hole, there is a unique limiting absolutely continuous conditionally invariant measure (accim) and there is a complete thermodynamic description of the dynamics on the survivor set; (2) an intermediate regime, where the rate of mixing and escape through the hole coincide, limiting accims exist, but much of the thermodynamic picture breaks down; (3) a subexponentially mixing regime where the slow mixing means that mass simply accumulates on the parabolic fixed point. We give a complete picture of the transitions and stability properties (in the size of the hole and as we move through the family) in this class of open systems. In particular, we are able to recover a form of stability in the third regime above via the dynamics on the survivor set, even when no limiting accim exists.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-017-2829-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Constraining ; Continuity (mathematics) ; Dynamic stability ; Escape systems ; Mathematical and Computational Physics ; Mathematical Physics ; Open systems ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2017-04, Vol.351 (2), p.775-835</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-396e02c0417f502b0605a9379ca3fc371a43dde329f499da45205f5ecba08bd13</citedby><cites>FETCH-LOGICAL-c316t-396e02c0417f502b0605a9379ca3fc371a43dde329f499da45205f5ecba08bd13</cites><orcidid>0000-0003-4558-3126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-017-2829-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-017-2829-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Demers, Mark F.</creatorcontrib><creatorcontrib>Todd, Mike</creatorcontrib><title>Slow and Fast Escape for Open Intermittent Maps</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>If a system mixes too slowly, putting a hole in it can completely destroy the richness of the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly mixing measures. We show that there are three regimes: (1) standard hyperbolic-like behavior where the rate of mixing is faster than the rate of escape through the hole, there is a unique limiting absolutely continuous conditionally invariant measure (accim) and there is a complete thermodynamic description of the dynamics on the survivor set; (2) an intermediate regime, where the rate of mixing and escape through the hole coincide, limiting accims exist, but much of the thermodynamic picture breaks down; (3) a subexponentially mixing regime where the slow mixing means that mass simply accumulates on the parabolic fixed point. We give a complete picture of the transitions and stability properties (in the size of the hole and as we move through the family) in this class of open systems. In particular, we are able to recover a form of stability in the third regime above via the dynamics on the survivor set, even when no limiting accim exists.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Constraining</subject><subject>Continuity (mathematics)</subject><subject>Dynamic stability</subject><subject>Escape systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Open systems</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQRi0EEqXwA9gsMZve2Ykdj6hqaaWiDsBsOY6NWrVJsF0h_j2pwsDCdMv73kmPkHuERwRQswTAOTBAxXjFNZMXZIKF4Aw0yksyAUBgQqK8Jjcp7QFAcyknZPZ66L6obRu6tCnTRXK29zR0kW5739J1m3087nL2baYvtk-35CrYQ_J3v3dK3peLt_mKbbbP6_nThjmBMjOhpQfuoEAVSuA1SCitFko7K4ITCm0hmsYLrkOhdWOLkkMZSu9qC1XdoJiSh9Hbx-7z5FM2--4U2-GlwaoCNfgKNVA4Ui52KUUfTB93Rxu_DYI5dzFjFzN0MecuRg4bPm7SwLYfPv4x_zv6ASJJYuA</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Demers, Mark F.</creator><creator>Todd, Mike</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4558-3126</orcidid></search><sort><creationdate>20170401</creationdate><title>Slow and Fast Escape for Open Intermittent Maps</title><author>Demers, Mark F. ; Todd, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-396e02c0417f502b0605a9379ca3fc371a43dde329f499da45205f5ecba08bd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Constraining</topic><topic>Continuity (mathematics)</topic><topic>Dynamic stability</topic><topic>Escape systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Open systems</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demers, Mark F.</creatorcontrib><creatorcontrib>Todd, Mike</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demers, Mark F.</au><au>Todd, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow and Fast Escape for Open Intermittent Maps</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>351</volume><issue>2</issue><spage>775</spage><epage>835</epage><pages>775-835</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>If a system mixes too slowly, putting a hole in it can completely destroy the richness of the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly mixing measures. We show that there are three regimes: (1) standard hyperbolic-like behavior where the rate of mixing is faster than the rate of escape through the hole, there is a unique limiting absolutely continuous conditionally invariant measure (accim) and there is a complete thermodynamic description of the dynamics on the survivor set; (2) an intermediate regime, where the rate of mixing and escape through the hole coincide, limiting accims exist, but much of the thermodynamic picture breaks down; (3) a subexponentially mixing regime where the slow mixing means that mass simply accumulates on the parabolic fixed point. We give a complete picture of the transitions and stability properties (in the size of the hole and as we move through the family) in this class of open systems. In particular, we are able to recover a form of stability in the third regime above via the dynamics on the survivor set, even when no limiting accim exists.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-017-2829-6</doi><tpages>61</tpages><orcidid>https://orcid.org/0000-0003-4558-3126</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-3616 |
ispartof | Communications in mathematical physics, 2017-04, Vol.351 (2), p.775-835 |
issn | 0010-3616 1432-0916 |
language | eng |
recordid | cdi_proquest_journals_1880760547 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classical and Quantum Gravitation Complex Systems Constraining Continuity (mathematics) Dynamic stability Escape systems Mathematical and Computational Physics Mathematical Physics Open systems Physics Physics and Astronomy Quantum Physics Relativity Theory Theoretical |
title | Slow and Fast Escape for Open Intermittent Maps |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow%20and%20Fast%20Escape%20for%20Open%20Intermittent%20Maps&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Demers,%20Mark%20F.&rft.date=2017-04-01&rft.volume=351&rft.issue=2&rft.spage=775&rft.epage=835&rft.pages=775-835&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-017-2829-6&rft_dat=%3Cproquest_cross%3E1880760547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880760547&rft_id=info:pmid/&rfr_iscdi=true |