Slow and Fast Escape for Open Intermittent Maps

If a system mixes too slowly, putting a hole in it can completely destroy the richness of the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly mixing measures. We show that there are three regimes: (1) standard hyperbolic-like behavior where the rate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2017-04, Vol.351 (2), p.775-835
Hauptverfasser: Demers, Mark F., Todd, Mike
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 835
container_issue 2
container_start_page 775
container_title Communications in mathematical physics
container_volume 351
creator Demers, Mark F.
Todd, Mike
description If a system mixes too slowly, putting a hole in it can completely destroy the richness of the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly mixing measures. We show that there are three regimes: (1) standard hyperbolic-like behavior where the rate of mixing is faster than the rate of escape through the hole, there is a unique limiting absolutely continuous conditionally invariant measure (accim) and there is a complete thermodynamic description of the dynamics on the survivor set; (2) an intermediate regime, where the rate of mixing and escape through the hole coincide, limiting accims exist, but much of the thermodynamic picture breaks down; (3) a subexponentially mixing regime where the slow mixing means that mass simply accumulates on the parabolic fixed point. We give a complete picture of the transitions and stability properties (in the size of the hole and as we move through the family) in this class of open systems. In particular, we are able to recover a form of stability in the third regime above via the dynamics on the survivor set, even when no limiting accim exists.
doi_str_mv 10.1007/s00220-017-2829-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880760547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880760547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-396e02c0417f502b0605a9379ca3fc371a43dde329f499da45205f5ecba08bd13</originalsourceid><addsrcrecordid>eNp1kDFPwzAQRi0EEqXwA9gsMZve2Ykdj6hqaaWiDsBsOY6NWrVJsF0h_j2pwsDCdMv73kmPkHuERwRQswTAOTBAxXjFNZMXZIKF4Aw0yksyAUBgQqK8Jjcp7QFAcyknZPZ66L6obRu6tCnTRXK29zR0kW5739J1m3087nL2baYvtk-35CrYQ_J3v3dK3peLt_mKbbbP6_nThjmBMjOhpQfuoEAVSuA1SCitFko7K4ITCm0hmsYLrkOhdWOLkkMZSu9qC1XdoJiSh9Hbx-7z5FM2--4U2-GlwaoCNfgKNVA4Ui52KUUfTB93Rxu_DYI5dzFjFzN0MecuRg4bPm7SwLYfPv4x_zv6ASJJYuA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880760547</pqid></control><display><type>article</type><title>Slow and Fast Escape for Open Intermittent Maps</title><source>SpringerLink Journals - AutoHoldings</source><creator>Demers, Mark F. ; Todd, Mike</creator><creatorcontrib>Demers, Mark F. ; Todd, Mike</creatorcontrib><description>If a system mixes too slowly, putting a hole in it can completely destroy the richness of the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly mixing measures. We show that there are three regimes: (1) standard hyperbolic-like behavior where the rate of mixing is faster than the rate of escape through the hole, there is a unique limiting absolutely continuous conditionally invariant measure (accim) and there is a complete thermodynamic description of the dynamics on the survivor set; (2) an intermediate regime, where the rate of mixing and escape through the hole coincide, limiting accims exist, but much of the thermodynamic picture breaks down; (3) a subexponentially mixing regime where the slow mixing means that mass simply accumulates on the parabolic fixed point. We give a complete picture of the transitions and stability properties (in the size of the hole and as we move through the family) in this class of open systems. In particular, we are able to recover a form of stability in the third regime above via the dynamics on the survivor set, even when no limiting accim exists.</description><identifier>ISSN: 0010-3616</identifier><identifier>EISSN: 1432-0916</identifier><identifier>DOI: 10.1007/s00220-017-2829-6</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Classical and Quantum Gravitation ; Complex Systems ; Constraining ; Continuity (mathematics) ; Dynamic stability ; Escape systems ; Mathematical and Computational Physics ; Mathematical Physics ; Open systems ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativity Theory ; Theoretical</subject><ispartof>Communications in mathematical physics, 2017-04, Vol.351 (2), p.775-835</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-396e02c0417f502b0605a9379ca3fc371a43dde329f499da45205f5ecba08bd13</citedby><cites>FETCH-LOGICAL-c316t-396e02c0417f502b0605a9379ca3fc371a43dde329f499da45205f5ecba08bd13</cites><orcidid>0000-0003-4558-3126</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00220-017-2829-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00220-017-2829-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Demers, Mark F.</creatorcontrib><creatorcontrib>Todd, Mike</creatorcontrib><title>Slow and Fast Escape for Open Intermittent Maps</title><title>Communications in mathematical physics</title><addtitle>Commun. Math. Phys</addtitle><description>If a system mixes too slowly, putting a hole in it can completely destroy the richness of the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly mixing measures. We show that there are three regimes: (1) standard hyperbolic-like behavior where the rate of mixing is faster than the rate of escape through the hole, there is a unique limiting absolutely continuous conditionally invariant measure (accim) and there is a complete thermodynamic description of the dynamics on the survivor set; (2) an intermediate regime, where the rate of mixing and escape through the hole coincide, limiting accims exist, but much of the thermodynamic picture breaks down; (3) a subexponentially mixing regime where the slow mixing means that mass simply accumulates on the parabolic fixed point. We give a complete picture of the transitions and stability properties (in the size of the hole and as we move through the family) in this class of open systems. In particular, we are able to recover a form of stability in the third regime above via the dynamics on the survivor set, even when no limiting accim exists.</description><subject>Classical and Quantum Gravitation</subject><subject>Complex Systems</subject><subject>Constraining</subject><subject>Continuity (mathematics)</subject><subject>Dynamic stability</subject><subject>Escape systems</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Physics</subject><subject>Open systems</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativity Theory</subject><subject>Theoretical</subject><issn>0010-3616</issn><issn>1432-0916</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQRi0EEqXwA9gsMZve2Ykdj6hqaaWiDsBsOY6NWrVJsF0h_j2pwsDCdMv73kmPkHuERwRQswTAOTBAxXjFNZMXZIKF4Aw0yksyAUBgQqK8Jjcp7QFAcyknZPZ66L6obRu6tCnTRXK29zR0kW5739J1m3087nL2baYvtk-35CrYQ_J3v3dK3peLt_mKbbbP6_nThjmBMjOhpQfuoEAVSuA1SCitFko7K4ITCm0hmsYLrkOhdWOLkkMZSu9qC1XdoJiSh9Hbx-7z5FM2--4U2-GlwaoCNfgKNVA4Ui52KUUfTB93Rxu_DYI5dzFjFzN0MecuRg4bPm7SwLYfPv4x_zv6ASJJYuA</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Demers, Mark F.</creator><creator>Todd, Mike</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-4558-3126</orcidid></search><sort><creationdate>20170401</creationdate><title>Slow and Fast Escape for Open Intermittent Maps</title><author>Demers, Mark F. ; Todd, Mike</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-396e02c0417f502b0605a9379ca3fc371a43dde329f499da45205f5ecba08bd13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Classical and Quantum Gravitation</topic><topic>Complex Systems</topic><topic>Constraining</topic><topic>Continuity (mathematics)</topic><topic>Dynamic stability</topic><topic>Escape systems</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Physics</topic><topic>Open systems</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativity Theory</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Demers, Mark F.</creatorcontrib><creatorcontrib>Todd, Mike</creatorcontrib><collection>CrossRef</collection><jtitle>Communications in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Demers, Mark F.</au><au>Todd, Mike</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Slow and Fast Escape for Open Intermittent Maps</atitle><jtitle>Communications in mathematical physics</jtitle><stitle>Commun. Math. Phys</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>351</volume><issue>2</issue><spage>775</spage><epage>835</epage><pages>775-835</pages><issn>0010-3616</issn><eissn>1432-0916</eissn><abstract>If a system mixes too slowly, putting a hole in it can completely destroy the richness of the dynamics. Here we study this instability for a class of intermittent maps with a family of slowly mixing measures. We show that there are three regimes: (1) standard hyperbolic-like behavior where the rate of mixing is faster than the rate of escape through the hole, there is a unique limiting absolutely continuous conditionally invariant measure (accim) and there is a complete thermodynamic description of the dynamics on the survivor set; (2) an intermediate regime, where the rate of mixing and escape through the hole coincide, limiting accims exist, but much of the thermodynamic picture breaks down; (3) a subexponentially mixing regime where the slow mixing means that mass simply accumulates on the parabolic fixed point. We give a complete picture of the transitions and stability properties (in the size of the hole and as we move through the family) in this class of open systems. In particular, we are able to recover a form of stability in the third regime above via the dynamics on the survivor set, even when no limiting accim exists.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00220-017-2829-6</doi><tpages>61</tpages><orcidid>https://orcid.org/0000-0003-4558-3126</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0010-3616
ispartof Communications in mathematical physics, 2017-04, Vol.351 (2), p.775-835
issn 0010-3616
1432-0916
language eng
recordid cdi_proquest_journals_1880760547
source SpringerLink Journals - AutoHoldings
subjects Classical and Quantum Gravitation
Complex Systems
Constraining
Continuity (mathematics)
Dynamic stability
Escape systems
Mathematical and Computational Physics
Mathematical Physics
Open systems
Physics
Physics and Astronomy
Quantum Physics
Relativity Theory
Theoretical
title Slow and Fast Escape for Open Intermittent Maps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T16%3A22%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Slow%20and%20Fast%20Escape%20for%20Open%20Intermittent%20Maps&rft.jtitle=Communications%20in%20mathematical%20physics&rft.au=Demers,%20Mark%20F.&rft.date=2017-04-01&rft.volume=351&rft.issue=2&rft.spage=775&rft.epage=835&rft.pages=775-835&rft.issn=0010-3616&rft.eissn=1432-0916&rft_id=info:doi/10.1007/s00220-017-2829-6&rft_dat=%3Cproquest_cross%3E1880760547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880760547&rft_id=info:pmid/&rfr_iscdi=true