A rational reciprocity law over function fields

In the classical case, reciprocity laws for power residue symbols are called rational, which means that the power residue symbols only assume the values ± 1 and have entries in Z . We establish a rational reciprocity law over function fields.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2017-03, Vol.108 (3), p.233-240
1. Verfasser: Hamahata, Yoshinori
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240
container_issue 3
container_start_page 233
container_title Archiv der Mathematik
container_volume 108
creator Hamahata, Yoshinori
description In the classical case, reciprocity laws for power residue symbols are called rational, which means that the power residue symbols only assume the values ± 1 and have entries in Z . We establish a rational reciprocity law over function fields.
doi_str_mv 10.1007/s00013-016-0990-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880756270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880756270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-dc887a9cc9a22d0ebecb580815773aa758c6be46537507a1b275a5cf4a0dd5d83</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoWEd_gLuC6zgvSdO8LIfBLxhwo-AupGkqHWo7Jq0y_96UunDj6i3uuZfHIeSawS0DUOsIAExQYCUFrYGKE5KxggNFLfCUZCkWFFG_nZOLGPcJ5qh0RtabPNixHXrb5cG79hAG147HvLPf-fDlQ95MvZvzvGl9V8dLctbYLvqr37sir_d3L9tHunt-eNpudtTxEkdaO0RltXPacl6Dr7yrJAIyqZSwVkl0ZeWLUgolQVlWcSWtdE1hoa5ljWJFbpbd9NDn5ONo9sMU0pfRMERQsuQKEsUWyoUhxuAbcwjthw1Hw8DMXszixSQvZvZiROrwpRMT27_78Gf539IP5g5kkA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880756270</pqid></control><display><type>article</type><title>A rational reciprocity law over function fields</title><source>Springer Nature - Complete Springer Journals</source><creator>Hamahata, Yoshinori</creator><creatorcontrib>Hamahata, Yoshinori</creatorcontrib><description>In the classical case, reciprocity laws for power residue symbols are called rational, which means that the power residue symbols only assume the values ± 1 and have entries in Z . We establish a rational reciprocity law over function fields.</description><identifier>ISSN: 0003-889X</identifier><identifier>EISSN: 1420-8938</identifier><identifier>DOI: 10.1007/s00013-016-0990-3</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Mathematics ; Mathematics and Statistics ; Reciprocity ; Symbols</subject><ispartof>Archiv der Mathematik, 2017-03, Vol.108 (3), p.233-240</ispartof><rights>Springer International Publishing 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-dc887a9cc9a22d0ebecb580815773aa758c6be46537507a1b275a5cf4a0dd5d83</cites><orcidid>0000-0003-1849-0725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00013-016-0990-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00013-016-0990-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Hamahata, Yoshinori</creatorcontrib><title>A rational reciprocity law over function fields</title><title>Archiv der Mathematik</title><addtitle>Arch. Math</addtitle><description>In the classical case, reciprocity laws for power residue symbols are called rational, which means that the power residue symbols only assume the values ± 1 and have entries in Z . We establish a rational reciprocity law over function fields.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Reciprocity</subject><subject>Symbols</subject><issn>0003-889X</issn><issn>1420-8938</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoWEd_gLuC6zgvSdO8LIfBLxhwo-AupGkqHWo7Jq0y_96UunDj6i3uuZfHIeSawS0DUOsIAExQYCUFrYGKE5KxggNFLfCUZCkWFFG_nZOLGPcJ5qh0RtabPNixHXrb5cG79hAG147HvLPf-fDlQ95MvZvzvGl9V8dLctbYLvqr37sir_d3L9tHunt-eNpudtTxEkdaO0RltXPacl6Dr7yrJAIyqZSwVkl0ZeWLUgolQVlWcSWtdE1hoa5ljWJFbpbd9NDn5ONo9sMU0pfRMERQsuQKEsUWyoUhxuAbcwjthw1Hw8DMXszixSQvZvZiROrwpRMT27_78Gf539IP5g5kkA</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Hamahata, Yoshinori</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-1849-0725</orcidid></search><sort><creationdate>20170301</creationdate><title>A rational reciprocity law over function fields</title><author>Hamahata, Yoshinori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-dc887a9cc9a22d0ebecb580815773aa758c6be46537507a1b275a5cf4a0dd5d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Reciprocity</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hamahata, Yoshinori</creatorcontrib><collection>CrossRef</collection><jtitle>Archiv der Mathematik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hamahata, Yoshinori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A rational reciprocity law over function fields</atitle><jtitle>Archiv der Mathematik</jtitle><stitle>Arch. Math</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>108</volume><issue>3</issue><spage>233</spage><epage>240</epage><pages>233-240</pages><issn>0003-889X</issn><eissn>1420-8938</eissn><abstract>In the classical case, reciprocity laws for power residue symbols are called rational, which means that the power residue symbols only assume the values ± 1 and have entries in Z . We establish a rational reciprocity law over function fields.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00013-016-0990-3</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-1849-0725</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-889X
ispartof Archiv der Mathematik, 2017-03, Vol.108 (3), p.233-240
issn 0003-889X
1420-8938
language eng
recordid cdi_proquest_journals_1880756270
source Springer Nature - Complete Springer Journals
subjects Mathematics
Mathematics and Statistics
Reciprocity
Symbols
title A rational reciprocity law over function fields
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A34%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20rational%20reciprocity%20law%20over%20function%20fields&rft.jtitle=Archiv%20der%20Mathematik&rft.au=Hamahata,%20Yoshinori&rft.date=2017-03-01&rft.volume=108&rft.issue=3&rft.spage=233&rft.epage=240&rft.pages=233-240&rft.issn=0003-889X&rft.eissn=1420-8938&rft_id=info:doi/10.1007/s00013-016-0990-3&rft_dat=%3Cproquest_cross%3E1880756270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880756270&rft_id=info:pmid/&rfr_iscdi=true