Threshold dynamics of a stochastic Keizer’s model with stochastic incidence

In this paper, we incorporate stochastic incidence of a chemical reaction into the standard Keizer’s open chemical reaction. We prove that a positive stationary distribution (PSD) for the associated chemical master equation exists and is globally asymptotically stable. We present threshold dynamics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical chemistry 2017-04, Vol.55 (4), p.1034-1045
1. Verfasser: Xu, Chuang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we incorporate stochastic incidence of a chemical reaction into the standard Keizer’s open chemical reaction. We prove that a positive stationary distribution (PSD) for the associated chemical master equation exists and is globally asymptotically stable. We present threshold dynamics of the stochastic Keizer’s model in term of the profile of the PSD for both finite and infinite volume size V . This establishes a sharp link between deterministic Keizer’s model and the stochastic model. In this way, we resolve Keizer’s paradox from a new perspective. This simple model reveals that such stochastic incidence incorporated, though negligible when V goes to infinity, may play an indispensable role in the stochastic formulation for irreversible biochemical reactions.
ISSN:0259-9791
1572-8897
DOI:10.1007/s10910-016-0730-8