Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage

Nitrogen-doped porous carbon plates have been prepared by simple and cost-effective pyrolysis carbonization of an easily available biomass-fallen camellia flower and followed by alkali activation. As-prepared nitrogen-doped porous carbon (aNPCP3) possesses a high specific surface area of 2318 m 2  g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of solid state electrochemistry 2017-04, Vol.21 (4), p.1165-1174
Hauptverfasser: Guo, Daying, Zheng, Cong, Deng, Wenjuan, Chen, Xi’an, Wei, Huifang, Liu, Menglan, Huang, Shaoming
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1174
container_issue 4
container_start_page 1165
container_title Journal of solid state electrochemistry
container_volume 21
creator Guo, Daying
Zheng, Cong
Deng, Wenjuan
Chen, Xi’an
Wei, Huifang
Liu, Menglan
Huang, Shaoming
description Nitrogen-doped porous carbon plates have been prepared by simple and cost-effective pyrolysis carbonization of an easily available biomass-fallen camellia flower and followed by alkali activation. As-prepared nitrogen-doped porous carbon (aNPCP3) possesses a high specific surface area of 2318 m 2  g −1 and abundant micro/meso-pores. As a result, the aNPCP3 samples have been demonstrated to be electrodes for supercapacitors, displaying a high specific capacitance of 354 F g −1 at a current density of 0.2 A g −1 and excellent cycling stability. Further, the aNPCP3 samples used as sulfur host materials for lithium-sulfur batteries exhibit a high capacity of 1210 mAh g −1 and good cycling stability with a small capacity decay of about 0.1 % per cycle. Interestingly, it is found that their electrochemical performances are dependent on their specific surface area, pore structure, and heteroatom-doping content and type of carbon materials to a large extent. Cheapness, convenient resource, and good performance make these electrode materials displaying huge potential in cost-effective high-performance energy storage devices.
doi_str_mv 10.1007/s10008-016-3474-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880748094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880748094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-7f605d2763f124ad92d23fdf363262ff25c3289dc2d456d3f95dff4499b8200a3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYsoOI7-AHcB19F8NU2XMvgFg250HTLNS-2QNjXpKPPvzVgXbty8PMi598EpiktKrikh1U3KkyhMqMRcVAKzo2JBBeeYVFId_-wMK6HUaXGW0pYQWklKFsX2uZtiaGHANoxg0Rhi2CXUmLgJAxq9mSAhC7H7zJ8uhh454z0MmejB-84g58MXRORCROChyW3NO_RdYzyCAWK7R2kK0bRwXpzkbIKL33dZvN3fva4e8frl4Wl1u8YNL6sJV06S0rJKckeZMLZmlnFnHZecSeYcKxvOVG0bZkUpLXd1aZ0Toq43ihFi-LK4mnvHGD52kCa9Dbs45JOaKkUqoUgtMkVnqokhpQhOj7HrTdxrSvRBqZ6V6qxUH5RqljNszqTMDi3EP83_hr4BsS96dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880748094</pqid></control><display><type>article</type><title>Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage</title><source>SpringerLink Journals - AutoHoldings</source><creator>Guo, Daying ; Zheng, Cong ; Deng, Wenjuan ; Chen, Xi’an ; Wei, Huifang ; Liu, Menglan ; Huang, Shaoming</creator><creatorcontrib>Guo, Daying ; Zheng, Cong ; Deng, Wenjuan ; Chen, Xi’an ; Wei, Huifang ; Liu, Menglan ; Huang, Shaoming</creatorcontrib><description>Nitrogen-doped porous carbon plates have been prepared by simple and cost-effective pyrolysis carbonization of an easily available biomass-fallen camellia flower and followed by alkali activation. As-prepared nitrogen-doped porous carbon (aNPCP3) possesses a high specific surface area of 2318 m 2  g −1 and abundant micro/meso-pores. As a result, the aNPCP3 samples have been demonstrated to be electrodes for supercapacitors, displaying a high specific capacitance of 354 F g −1 at a current density of 0.2 A g −1 and excellent cycling stability. Further, the aNPCP3 samples used as sulfur host materials for lithium-sulfur batteries exhibit a high capacity of 1210 mAh g −1 and good cycling stability with a small capacity decay of about 0.1 % per cycle. Interestingly, it is found that their electrochemical performances are dependent on their specific surface area, pore structure, and heteroatom-doping content and type of carbon materials to a large extent. Cheapness, convenient resource, and good performance make these electrode materials displaying huge potential in cost-effective high-performance energy storage devices.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-016-3474-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Carbon ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Cycles ; Electrochemistry ; Electrode materials ; Energy Storage ; Lithium sulfur batteries ; Nitrogen ; Original Paper ; Physical Chemistry ; Plates ; Pyrolysis ; Specific surface ; Stability ; Surface area</subject><ispartof>Journal of solid state electrochemistry, 2017-04, Vol.21 (4), p.1165-1174</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-7f605d2763f124ad92d23fdf363262ff25c3289dc2d456d3f95dff4499b8200a3</citedby><cites>FETCH-LOGICAL-c357t-7f605d2763f124ad92d23fdf363262ff25c3289dc2d456d3f95dff4499b8200a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-016-3474-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-016-3474-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Guo, Daying</creatorcontrib><creatorcontrib>Zheng, Cong</creatorcontrib><creatorcontrib>Deng, Wenjuan</creatorcontrib><creatorcontrib>Chen, Xi’an</creatorcontrib><creatorcontrib>Wei, Huifang</creatorcontrib><creatorcontrib>Liu, Menglan</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><title>Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Nitrogen-doped porous carbon plates have been prepared by simple and cost-effective pyrolysis carbonization of an easily available biomass-fallen camellia flower and followed by alkali activation. As-prepared nitrogen-doped porous carbon (aNPCP3) possesses a high specific surface area of 2318 m 2  g −1 and abundant micro/meso-pores. As a result, the aNPCP3 samples have been demonstrated to be electrodes for supercapacitors, displaying a high specific capacitance of 354 F g −1 at a current density of 0.2 A g −1 and excellent cycling stability. Further, the aNPCP3 samples used as sulfur host materials for lithium-sulfur batteries exhibit a high capacity of 1210 mAh g −1 and good cycling stability with a small capacity decay of about 0.1 % per cycle. Interestingly, it is found that their electrochemical performances are dependent on their specific surface area, pore structure, and heteroatom-doping content and type of carbon materials to a large extent. Cheapness, convenient resource, and good performance make these electrode materials displaying huge potential in cost-effective high-performance energy storage devices.</description><subject>Analytical Chemistry</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy Storage</subject><subject>Lithium sulfur batteries</subject><subject>Nitrogen</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Plates</subject><subject>Pyrolysis</subject><subject>Specific surface</subject><subject>Stability</subject><subject>Surface area</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYsoOI7-AHcB19F8NU2XMvgFg250HTLNS-2QNjXpKPPvzVgXbty8PMi598EpiktKrikh1U3KkyhMqMRcVAKzo2JBBeeYVFId_-wMK6HUaXGW0pYQWklKFsX2uZtiaGHANoxg0Rhi2CXUmLgJAxq9mSAhC7H7zJ8uhh454z0MmejB-84g58MXRORCROChyW3NO_RdYzyCAWK7R2kK0bRwXpzkbIKL33dZvN3fva4e8frl4Wl1u8YNL6sJV06S0rJKckeZMLZmlnFnHZecSeYcKxvOVG0bZkUpLXd1aZ0Toq43ihFi-LK4mnvHGD52kCa9Dbs45JOaKkUqoUgtMkVnqokhpQhOj7HrTdxrSvRBqZ6V6qxUH5RqljNszqTMDi3EP83_hr4BsS96dQ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Guo, Daying</creator><creator>Zheng, Cong</creator><creator>Deng, Wenjuan</creator><creator>Chen, Xi’an</creator><creator>Wei, Huifang</creator><creator>Liu, Menglan</creator><creator>Huang, Shaoming</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage</title><author>Guo, Daying ; Zheng, Cong ; Deng, Wenjuan ; Chen, Xi’an ; Wei, Huifang ; Liu, Menglan ; Huang, Shaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-7f605d2763f124ad92d23fdf363262ff25c3289dc2d456d3f95dff4499b8200a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical Chemistry</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy Storage</topic><topic>Lithium sulfur batteries</topic><topic>Nitrogen</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Plates</topic><topic>Pyrolysis</topic><topic>Specific surface</topic><topic>Stability</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Daying</creatorcontrib><creatorcontrib>Zheng, Cong</creatorcontrib><creatorcontrib>Deng, Wenjuan</creatorcontrib><creatorcontrib>Chen, Xi’an</creatorcontrib><creatorcontrib>Wei, Huifang</creatorcontrib><creatorcontrib>Liu, Menglan</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Daying</au><au>Zheng, Cong</au><au>Deng, Wenjuan</au><au>Chen, Xi’an</au><au>Wei, Huifang</au><au>Liu, Menglan</au><au>Huang, Shaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>21</volume><issue>4</issue><spage>1165</spage><epage>1174</epage><pages>1165-1174</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Nitrogen-doped porous carbon plates have been prepared by simple and cost-effective pyrolysis carbonization of an easily available biomass-fallen camellia flower and followed by alkali activation. As-prepared nitrogen-doped porous carbon (aNPCP3) possesses a high specific surface area of 2318 m 2  g −1 and abundant micro/meso-pores. As a result, the aNPCP3 samples have been demonstrated to be electrodes for supercapacitors, displaying a high specific capacitance of 354 F g −1 at a current density of 0.2 A g −1 and excellent cycling stability. Further, the aNPCP3 samples used as sulfur host materials for lithium-sulfur batteries exhibit a high capacity of 1210 mAh g −1 and good cycling stability with a small capacity decay of about 0.1 % per cycle. Interestingly, it is found that their electrochemical performances are dependent on their specific surface area, pore structure, and heteroatom-doping content and type of carbon materials to a large extent. Cheapness, convenient resource, and good performance make these electrode materials displaying huge potential in cost-effective high-performance energy storage devices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-016-3474-2</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1432-8488
ispartof Journal of solid state electrochemistry, 2017-04, Vol.21 (4), p.1165-1174
issn 1432-8488
1433-0768
language eng
recordid cdi_proquest_journals_1880748094
source SpringerLink Journals - AutoHoldings
subjects Analytical Chemistry
Carbon
Characterization and Evaluation of Materials
Chemistry
Chemistry and Materials Science
Condensed Matter Physics
Cycles
Electrochemistry
Electrode materials
Energy Storage
Lithium sulfur batteries
Nitrogen
Original Paper
Physical Chemistry
Plates
Pyrolysis
Specific surface
Stability
Surface area
title Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-doped%20porous%20carbon%20plates%20derived%20from%20fallen%20camellia%20flower%20for%20electrochemical%20energy%20storage&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Guo,%20Daying&rft.date=2017-04-01&rft.volume=21&rft.issue=4&rft.spage=1165&rft.epage=1174&rft.pages=1165-1174&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-016-3474-2&rft_dat=%3Cproquest_cross%3E1880748094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880748094&rft_id=info:pmid/&rfr_iscdi=true