Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage
Nitrogen-doped porous carbon plates have been prepared by simple and cost-effective pyrolysis carbonization of an easily available biomass-fallen camellia flower and followed by alkali activation. As-prepared nitrogen-doped porous carbon (aNPCP3) possesses a high specific surface area of 2318 m 2 g...
Gespeichert in:
Veröffentlicht in: | Journal of solid state electrochemistry 2017-04, Vol.21 (4), p.1165-1174 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1174 |
---|---|
container_issue | 4 |
container_start_page | 1165 |
container_title | Journal of solid state electrochemistry |
container_volume | 21 |
creator | Guo, Daying Zheng, Cong Deng, Wenjuan Chen, Xi’an Wei, Huifang Liu, Menglan Huang, Shaoming |
description | Nitrogen-doped porous carbon plates have been prepared by simple and cost-effective pyrolysis carbonization of an easily available biomass-fallen camellia flower and followed by alkali activation. As-prepared nitrogen-doped porous carbon (aNPCP3) possesses a high specific surface area of 2318 m
2
g
−1
and abundant micro/meso-pores. As a result, the aNPCP3 samples have been demonstrated to be electrodes for supercapacitors, displaying a high specific capacitance of 354 F g
−1
at a current density of 0.2 A g
−1
and excellent cycling stability. Further, the aNPCP3 samples used as sulfur host materials for lithium-sulfur batteries exhibit a high capacity of 1210 mAh g
−1
and good cycling stability with a small capacity decay of about 0.1 % per cycle. Interestingly, it is found that their electrochemical performances are dependent on their specific surface area, pore structure, and heteroatom-doping content and type of carbon materials to a large extent. Cheapness, convenient resource, and good performance make these electrode materials displaying huge potential in cost-effective high-performance energy storage devices. |
doi_str_mv | 10.1007/s10008-016-3474-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1880748094</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1880748094</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-7f605d2763f124ad92d23fdf363262ff25c3289dc2d456d3f95dff4499b8200a3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYsoOI7-AHcB19F8NU2XMvgFg250HTLNS-2QNjXpKPPvzVgXbty8PMi598EpiktKrikh1U3KkyhMqMRcVAKzo2JBBeeYVFId_-wMK6HUaXGW0pYQWklKFsX2uZtiaGHANoxg0Rhi2CXUmLgJAxq9mSAhC7H7zJ8uhh454z0MmejB-84g58MXRORCROChyW3NO_RdYzyCAWK7R2kK0bRwXpzkbIKL33dZvN3fva4e8frl4Wl1u8YNL6sJV06S0rJKckeZMLZmlnFnHZecSeYcKxvOVG0bZkUpLXd1aZ0Toq43ihFi-LK4mnvHGD52kCa9Dbs45JOaKkUqoUgtMkVnqokhpQhOj7HrTdxrSvRBqZ6V6qxUH5RqljNszqTMDi3EP83_hr4BsS96dQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1880748094</pqid></control><display><type>article</type><title>Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage</title><source>SpringerLink Journals - AutoHoldings</source><creator>Guo, Daying ; Zheng, Cong ; Deng, Wenjuan ; Chen, Xi’an ; Wei, Huifang ; Liu, Menglan ; Huang, Shaoming</creator><creatorcontrib>Guo, Daying ; Zheng, Cong ; Deng, Wenjuan ; Chen, Xi’an ; Wei, Huifang ; Liu, Menglan ; Huang, Shaoming</creatorcontrib><description>Nitrogen-doped porous carbon plates have been prepared by simple and cost-effective pyrolysis carbonization of an easily available biomass-fallen camellia flower and followed by alkali activation. As-prepared nitrogen-doped porous carbon (aNPCP3) possesses a high specific surface area of 2318 m
2
g
−1
and abundant micro/meso-pores. As a result, the aNPCP3 samples have been demonstrated to be electrodes for supercapacitors, displaying a high specific capacitance of 354 F g
−1
at a current density of 0.2 A g
−1
and excellent cycling stability. Further, the aNPCP3 samples used as sulfur host materials for lithium-sulfur batteries exhibit a high capacity of 1210 mAh g
−1
and good cycling stability with a small capacity decay of about 0.1 % per cycle. Interestingly, it is found that their electrochemical performances are dependent on their specific surface area, pore structure, and heteroatom-doping content and type of carbon materials to a large extent. Cheapness, convenient resource, and good performance make these electrode materials displaying huge potential in cost-effective high-performance energy storage devices.</description><identifier>ISSN: 1432-8488</identifier><identifier>EISSN: 1433-0768</identifier><identifier>DOI: 10.1007/s10008-016-3474-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analytical Chemistry ; Carbon ; Characterization and Evaluation of Materials ; Chemistry ; Chemistry and Materials Science ; Condensed Matter Physics ; Cycles ; Electrochemistry ; Electrode materials ; Energy Storage ; Lithium sulfur batteries ; Nitrogen ; Original Paper ; Physical Chemistry ; Plates ; Pyrolysis ; Specific surface ; Stability ; Surface area</subject><ispartof>Journal of solid state electrochemistry, 2017-04, Vol.21 (4), p.1165-1174</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-7f605d2763f124ad92d23fdf363262ff25c3289dc2d456d3f95dff4499b8200a3</citedby><cites>FETCH-LOGICAL-c357t-7f605d2763f124ad92d23fdf363262ff25c3289dc2d456d3f95dff4499b8200a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10008-016-3474-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10008-016-3474-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Guo, Daying</creatorcontrib><creatorcontrib>Zheng, Cong</creatorcontrib><creatorcontrib>Deng, Wenjuan</creatorcontrib><creatorcontrib>Chen, Xi’an</creatorcontrib><creatorcontrib>Wei, Huifang</creatorcontrib><creatorcontrib>Liu, Menglan</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><title>Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage</title><title>Journal of solid state electrochemistry</title><addtitle>J Solid State Electrochem</addtitle><description>Nitrogen-doped porous carbon plates have been prepared by simple and cost-effective pyrolysis carbonization of an easily available biomass-fallen camellia flower and followed by alkali activation. As-prepared nitrogen-doped porous carbon (aNPCP3) possesses a high specific surface area of 2318 m
2
g
−1
and abundant micro/meso-pores. As a result, the aNPCP3 samples have been demonstrated to be electrodes for supercapacitors, displaying a high specific capacitance of 354 F g
−1
at a current density of 0.2 A g
−1
and excellent cycling stability. Further, the aNPCP3 samples used as sulfur host materials for lithium-sulfur batteries exhibit a high capacity of 1210 mAh g
−1
and good cycling stability with a small capacity decay of about 0.1 % per cycle. Interestingly, it is found that their electrochemical performances are dependent on their specific surface area, pore structure, and heteroatom-doping content and type of carbon materials to a large extent. Cheapness, convenient resource, and good performance make these electrode materials displaying huge potential in cost-effective high-performance energy storage devices.</description><subject>Analytical Chemistry</subject><subject>Carbon</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Cycles</subject><subject>Electrochemistry</subject><subject>Electrode materials</subject><subject>Energy Storage</subject><subject>Lithium sulfur batteries</subject><subject>Nitrogen</subject><subject>Original Paper</subject><subject>Physical Chemistry</subject><subject>Plates</subject><subject>Pyrolysis</subject><subject>Specific surface</subject><subject>Stability</subject><subject>Surface area</subject><issn>1432-8488</issn><issn>1433-0768</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYsoOI7-AHcB19F8NU2XMvgFg250HTLNS-2QNjXpKPPvzVgXbty8PMi598EpiktKrikh1U3KkyhMqMRcVAKzo2JBBeeYVFId_-wMK6HUaXGW0pYQWklKFsX2uZtiaGHANoxg0Rhi2CXUmLgJAxq9mSAhC7H7zJ8uhh454z0MmejB-84g58MXRORCROChyW3NO_RdYzyCAWK7R2kK0bRwXpzkbIKL33dZvN3fva4e8frl4Wl1u8YNL6sJV06S0rJKckeZMLZmlnFnHZecSeYcKxvOVG0bZkUpLXd1aZ0Toq43ihFi-LK4mnvHGD52kCa9Dbs45JOaKkUqoUgtMkVnqokhpQhOj7HrTdxrSvRBqZ6V6qxUH5RqljNszqTMDi3EP83_hr4BsS96dQ</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Guo, Daying</creator><creator>Zheng, Cong</creator><creator>Deng, Wenjuan</creator><creator>Chen, Xi’an</creator><creator>Wei, Huifang</creator><creator>Liu, Menglan</creator><creator>Huang, Shaoming</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170401</creationdate><title>Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage</title><author>Guo, Daying ; Zheng, Cong ; Deng, Wenjuan ; Chen, Xi’an ; Wei, Huifang ; Liu, Menglan ; Huang, Shaoming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-7f605d2763f124ad92d23fdf363262ff25c3289dc2d456d3f95dff4499b8200a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analytical Chemistry</topic><topic>Carbon</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Cycles</topic><topic>Electrochemistry</topic><topic>Electrode materials</topic><topic>Energy Storage</topic><topic>Lithium sulfur batteries</topic><topic>Nitrogen</topic><topic>Original Paper</topic><topic>Physical Chemistry</topic><topic>Plates</topic><topic>Pyrolysis</topic><topic>Specific surface</topic><topic>Stability</topic><topic>Surface area</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Daying</creatorcontrib><creatorcontrib>Zheng, Cong</creatorcontrib><creatorcontrib>Deng, Wenjuan</creatorcontrib><creatorcontrib>Chen, Xi’an</creatorcontrib><creatorcontrib>Wei, Huifang</creatorcontrib><creatorcontrib>Liu, Menglan</creatorcontrib><creatorcontrib>Huang, Shaoming</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of solid state electrochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Daying</au><au>Zheng, Cong</au><au>Deng, Wenjuan</au><au>Chen, Xi’an</au><au>Wei, Huifang</au><au>Liu, Menglan</au><au>Huang, Shaoming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage</atitle><jtitle>Journal of solid state electrochemistry</jtitle><stitle>J Solid State Electrochem</stitle><date>2017-04-01</date><risdate>2017</risdate><volume>21</volume><issue>4</issue><spage>1165</spage><epage>1174</epage><pages>1165-1174</pages><issn>1432-8488</issn><eissn>1433-0768</eissn><abstract>Nitrogen-doped porous carbon plates have been prepared by simple and cost-effective pyrolysis carbonization of an easily available biomass-fallen camellia flower and followed by alkali activation. As-prepared nitrogen-doped porous carbon (aNPCP3) possesses a high specific surface area of 2318 m
2
g
−1
and abundant micro/meso-pores. As a result, the aNPCP3 samples have been demonstrated to be electrodes for supercapacitors, displaying a high specific capacitance of 354 F g
−1
at a current density of 0.2 A g
−1
and excellent cycling stability. Further, the aNPCP3 samples used as sulfur host materials for lithium-sulfur batteries exhibit a high capacity of 1210 mAh g
−1
and good cycling stability with a small capacity decay of about 0.1 % per cycle. Interestingly, it is found that their electrochemical performances are dependent on their specific surface area, pore structure, and heteroatom-doping content and type of carbon materials to a large extent. Cheapness, convenient resource, and good performance make these electrode materials displaying huge potential in cost-effective high-performance energy storage devices.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10008-016-3474-2</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1432-8488 |
ispartof | Journal of solid state electrochemistry, 2017-04, Vol.21 (4), p.1165-1174 |
issn | 1432-8488 1433-0768 |
language | eng |
recordid | cdi_proquest_journals_1880748094 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analytical Chemistry Carbon Characterization and Evaluation of Materials Chemistry Chemistry and Materials Science Condensed Matter Physics Cycles Electrochemistry Electrode materials Energy Storage Lithium sulfur batteries Nitrogen Original Paper Physical Chemistry Plates Pyrolysis Specific surface Stability Surface area |
title | Nitrogen-doped porous carbon plates derived from fallen camellia flower for electrochemical energy storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T21%3A37%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nitrogen-doped%20porous%20carbon%20plates%20derived%20from%20fallen%20camellia%20flower%20for%20electrochemical%20energy%20storage&rft.jtitle=Journal%20of%20solid%20state%20electrochemistry&rft.au=Guo,%20Daying&rft.date=2017-04-01&rft.volume=21&rft.issue=4&rft.spage=1165&rft.epage=1174&rft.pages=1165-1174&rft.issn=1432-8488&rft.eissn=1433-0768&rft_id=info:doi/10.1007/s10008-016-3474-2&rft_dat=%3Cproquest_cross%3E1880748094%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1880748094&rft_id=info:pmid/&rfr_iscdi=true |